
DISTRIBUTED COVERAGE ALGORITHMS APPLIED TO DISTRIBUTED TARGET TRACKING - ROBUSTNESS EVALUATION, DECEMBER 4, 2020 1

Distributed coverage algorithms applied to
distributed target tracking - Robustness evaluation

Arnaud Klipfel, Georgia Institute of Technology
aklipfel3@gatech.edu

CONTENTS

I Related works 2
I-A Uniform densities . 2
I-B Time-varying densities . 2
I-C Target tracking . 3
I-D In this work . 3

II Distributed coverage algorithms : description 3
II-A Lloyd’s algorithm . 3
II-B TVD Cortes . 4
II-C TVD-D1 . 4

III Distributed coverage algorithms : implementation 5
III-A Implementation method . 5
III-B Assumptions . 5
III-C Overview of the implementation . 6
III-D Lloyd’s algorithm . 6
III-E TVD-Cortes . 6
III-F TVD-D1 . 6
III-G Comparison, and robustness evaluation on a tracking task . 7

III-G1 Protocol . 7
III-G2 Tracking task description . 7
III-G3 Analysis . 7

IV A fully distributed implementation : discussion 8

V Distributed estimation algorithms : discussion 8

VI Conclusion 8

Appendix A: Archive description 9

Appendix B: How to run the simulation 11

References 11

DISTRIBUTED COVERAGE ALGORITHMS APPLIED TO DISTRIBUTED TARGET TRACKING - ROBUSTNESS EVALUATION, DECEMBER 4, 2020 2

Abstract—Distributed pursuit-evasion games or target tracking
problems can be formulated as coverage problems in time-
varying environments. The time-varying density function mod-
elling the environment can account for the uncertainty on the tar-
gets’ position. Previous works have not used the network of agents
to reach a consensus on the time-varying density, have considered
the velocity of the target as known, and have used Lloyd’s time-
invariant coverage control algorithm. This work surveys the state
of the art in distributed coverage control, implements the most
well-established coverage control algorithms, and evaluates their
robustness in simulation and hardware experiments on a single-
target tracking task. Finally, the dynamic coverage algorithm
TVD-D1 is found to be the best option for target tracking
applications.

Index Terms—Coverage control, target tracking, sensor net-
works, Voronoi diagrams, multi-robot systems.

I. RELATED WORKS

The coverage problem has been extensively studied in the
literature. Two coverage problems were studied, the path
coverage (see [1] for a survey) and the area coverage [2]–
[5]. This work focuses on the area coverage in a distributed
network of robots.The area coverage problem is the problem
of maximally spreading out agents (robots for instance) in
order to cover as much area as possible (this area is often
specified), while keeping the necessary connections between
agents, i.e. at least the graph of the network has to remain
connected. As was discussed in [6] connections have to be
kept with the Voronoi neighbors to execute a coverage control
as optimally as possible. On the other hand, path coverage is
a problem that can be defined with only one agent, while the
area coverage problem with only one agent does not really
constitute a problem anymore, it assumes that a network of
agents is considered. In the path coverage problem, a sole
agent or a network of agents have to sweep all the area to
cover through time, as opposed to the area coverage, where
agents have to see at a given time all the area to cover through
their sensors.

In this section, the area coverage problem, which will be
thereafter referred to as the coverage problem (this is how
it is referred to in the distributed systems literature), will
be explained from different angles and in different contexts.
This section serves as a survey presenting an overview of the
different sub-problems that can be encountered in the coverage
problem and that were encountered in this work. Finally, the
contribution of this work is explained in more depth, and the
structure of the paper is outlined.

A. Uniform densities

The design of distributed controllers that could control a
network of agents to cover a specified area was first studied
in [4], [5], [7]. The assumption here was that the area should
be covered uniformly, i.e. one location inside the coverage
area is as important as any other. A distributed algorithm
was proposed, Lloyd’s algorithm, whose implementation is
explained in II-A. This algorithm was initially proposed in [8],
but was applied to signal processing. It is a gradient-descent or
gradient-flow algorithm, which will make agents converge to a

Central Voronoi Tessellation (CVT), where agents have mini-
mized the coverage cost, i.e. they are optimally spread out over
the coverage area. The coverage area is covered and the area
to cover for each agent are minimized as much as possible.
Equivalently, the quality of the coverage is maximized. Lloyd’s
algorithm is the basis of all distributed algorithms, which have
been developed so far to tackle the coverage problem.

The area to cover is not always uniformly important to the
agents. Some parts may be of more importance and would
require more agents. This problem is formulated by using
a locational cost or a density function. As presented in [2],
[4], [5], [9], a density function specifies, which regions of
the coverage area are more important. It can be seen as a
probability distribution, which tells the frequency of important
events over the entire area to cover. The algorithm presented in
[4], [5], Lloyd’s algorithm, takes into account uniform density
functions. With such a control it is also possible to control
agents into a specified formation through the density function,
as presented in [4].

B. Time-varying densities

The coverage area may also change over time, leading to a
time-varying density function (TVD). In [4] a time-varying
version of Lloyd’s algorithm was the first to be proposed,
referred to as TVD Cortes in this work (after the name of one
of its authors), see section II-B for the details. This algorithm
makes assumptions on the density function, but not on the
rate of change of the density. The inertial moment of the
Voronoi region of each agent should remain constant [4]. Yet,
as pointed out in [9], [10] there is no reason to assume that
this holds true for every applications, and in the case, where
a human user would specify these densities or the regions of
interest other algorithms are then needed.

The first attempt to design a more general algorithm for
the dynamic coverage problem was underwent in [11]. A
controller that guarantees exponential convergence to a CVT
was designed based on an energy formulation and to make
agents follow the time-varying centroids of their Voronoi
region. However, for the controller to work as proved the
rate of change of the TVD has to be bounded. Other as-
sumptions made on the controller were tested in simulations
and experiments, but only for a Gaussian like distribution. In
[12], a human-swarm-interaction system is designed allowing
a user to specify at any given time a geometric pattern for the
swarm (network of robots with homogeneous capabilities) to
follow, by specifying interest points on a tablet-like interface,
i.e. by shaping the density function. In [9], [10], [12], other
distributed gradient-flow algorithms are presented to cope with
the time-varying case of the coverage problem. The main idea
was to design an algorithm that could from an initial CVT
follow the time-varying CVT asymptotically, in contrast to
[11], for details see II-C. In all the papers [9], [10], [12] only
one foundational algorithm is developed, but this algorithm is
not distributed and several distributed approximations of this
control law are then proposed. The one-hop approximation,
TVD-D1, i.e. when agents communicate with their direct
neighbors (in this case Voronoi neighbors) is presented section

DISTRIBUTED COVERAGE ALGORITHMS APPLIED TO DISTRIBUTED TARGET TRACKING - ROBUSTNESS EVALUATION, DECEMBER 4, 2020 3

II-C.
Other more recent works have built upon the state of the

art in dynamic coverage, such as [13], [14]. The main flaws
in the distributed controllers designed in [4], [9], are that
they either make assumptions on the density function, as in
[4], or that they do not come with theoretical guarantees for
convergence to a CVT, as in [9] for the distributed algorithms
(only experimental explanations are given). In [13], the authors
modified TVD Cortes [4] to provide a provable exponential
convergence to a CVT. Yet, it only holds in the case, where
the rate of change of the density function is bounded, which
may not be the case. In [14], a constraint-based controller was
built. The idea was to re-formulate the coverage problem as a
constrained optimization problem, where the goal was to find
the input command that minimized the coverage energy and
also the input energy. The findings in [9] were used to formu-
late the optimization problem. The controller showed better
performances than the controllers in [9]. The constraint-based
controller was proven to converge to a CVT with an actuator-
constraint free single integrator model, without making any
assumptions on the density functions at all. Finding a closed-
form controller for the dynamic coverage problem, that would
give a provable convergence to a CVT with non-restrictive
assumptions is still an open research problem.

C. Target tracking

Distributed Target tracking or, for a more general desig-
nation distributed pursuit-evasion games have been widely
studied in the multi-robot systems literature. Some works have
used Voronoi-based control, such as [15], [16], but few have
used Voronoi-based coverage control.

A pursuit-evasion game can actually be formulated as a
dynamic coverage problem. [4] was the first work to advance
such a formulation. The TVD was chosen as a Gaussian
like distribution centered around the target’s position, but
the matter was not investigated further. [11] extended the
formulation in [4]. An algorithm for multi-target tracking was
designed. Yet, the TVD did not account for the uncertainty on
each target’s position, and the velocity of the targets had to
remain low (for the TVD to have a bounded rate of change).
Lastly, the estimation of each target’s position and velocity was
not discussed. Each target’s state was supposed to be perfectly
known. [17] implemented a single target tracking algorithm,
and considered the target’s state estimation. The velocity was
assumed to remain constant and each agent estimates the
target’s position using a Kalman filter without propagating
the knowledge in the network, and so without exploiting the
coverage formation, which is optimal for a distributed esti-
mation algorithm. The controller used to accomplish dynamic
coverage was Lloyd’s algorithm, which was designed for time
invariant applications.

D. In this work

Dynamic coverage algorithms provide flexibility for pursuit-
evasion games. By shaping the TVD, multiple targets can be
added easily, pursuers can follow the region of exploration
(where the targets may be), and adopt relevant formations in

the exploration zone, such that distributed estimation algo-
rithms can be used efficiently to narrow the search and trap
the targets.

Previous works have not used the state of the art in dynamic
coverage, such as TVD-D1, and have not tested the robustness
of these algorithms to noisy estimations of the targets’ states.
The main question of this work is then : how robust are the
state of the art algorithms in coverage control on tracking tasks
in a stochastic setting, when the targets’ states are uncertain?

Lastly, previous works have not discussed the integration
of a distributed estimation algorithm in the stochastic setting.
Different solutions will be discussed.

To accomplish these objectives, section II presents the most
well-established algorithms of the state of the art in coverage
control. Lloyd’s algorithm, TVD Cortes, and TVD-D1 have
been implemented and tested both in simulation and hardware.
Hardware tests have been conducted with the Robotarium
platform [18]. The robustness of these algorithms is evaluated
and compared. The robustness tests consist of adding noise to
the target’s position and velocity, and to gradually increase
the velocity of the target. The integration of a distributed
estimation algorithm is discussed in V.

II. DISTRIBUTED COVERAGE ALGORITHMS : DESCRIPTION

This section presents the main algorithms constituting the
state of the art in distributed coverage control. To be complete
this list should also include the more recent algorithms (2019)
developed in [13], [14]. Nonetheless, the algorithms presented
here are sufficient for the robustness study, and already give
room for interesting comparisons. These algorithms are also
the basis of the more recent algorithms, and it is thus necessary
to study them first. The main derivations, and results are
mainly taken from [4], [9], [10]. The notations are inspired
by [9].

A. Lloyd’s algorithm

Lloyd’s algorithm is the most common algorithm used in
distributed coverage applications, and was designed for time-
invariant environments. The time-varying setting is considered
here, but the proofs are actually identical, and lead to the same
final control law.

The coverage area is considered to be a polytope D ∈ R2,
N ∈ N∗ agents are located in the region D, their position is
denoted as pi ∈ R2. The idea behind Lloyd’s algorithm is to
minimize the coverage cost, which can be written as,

H(p, T , t) =

N∑
i=1

∫
q∈Ti

f(‖q − pi‖)φ(q, t)dq (1)

where p = (p1, . . . , pN)T , T = {T1, . . . , TN} is a tessellation
of the coverage area, i.e. each agent is given a sub-area or
region to cover with their sensors, the region of agent i is Ti.
The sensor cost is denoted as the function f : R+ → R+, and
is strictly increasing. In this work, as it is often considered in
the literature, f : x 7→ x2. The function φ : D × R+ → R+

is the TVD. In some cases the density denotes a probability
distribution and is then normalized, φ : D×R+ → [0; 1] [17].

DISTRIBUTED COVERAGE ALGORITHMS APPLIED TO DISTRIBUTED TARGET TRACKING - ROBUSTNESS EVALUATION, DECEMBER 4, 2020 4

To minimize the coverage cost in (1) one needs to minimize
first with respect to the tessellation T . For one configuration
of the network p(t) at a given time t, the coverage cost is
minimized if and only if the tessellation T is a Voronoi tes-
sellation [4]. A Voronoi tessellation will thereafter be denoted
as V , and the coverage cost in (1) can be denoted as HV ,
now that the tessellation in not a variable to minimize. The
question is then : how to find the optimal configuration p∗ for
the agents?

To find the configuration p∗ that minimizes the coverage
cost, a gradient-descent algorithm is designed. From [4], one
can show that,

∂HV
∂pi

(p, t) = 2mi(p, t)((pi(t)− ci(p, t))T (2)

where the generalized mass of the Voronoi region Vi is given
as,

mi(p, t) =

∫
Vi(p)

φ(q, t)dq (3)

And the center of mass or centroid of Vi is given as,

ci(p, t) =

∫
Vi(p)

qφ(q, t)dq

mi(p, t)
(4)

Considering that the controlled system can be transformed as
a single-integrator model, the control is,

ui = ṗi = −k∂HV
∂pi

(p, t)T (5)

where k > 0 is a positive gain.
Finally, the coefficient 2mi(p, t) can be removed, since in a

gradient descent algorithm the only thing that matters is that
the updates are made in the opposite direction of the gradient.
Lloyd’s algorithm is given as,

ui = −k(pi(t)− ci(p, t)) (Lloyd)

Lloyd’s algorithm in the time-invariant setting is proven to
have a local asymptotic stability, and makes the agent converge
to a CVT [5]. Local since depending on the initial positions
of the agents, the CVT may be different, there is no unique
CVT for a given distribution and a coverage region. For given
positions of agents p, the CVT is defined as the Voronoi
tessellation where all agents are located at the centroid of their
respective region.

As discussed in [9], in the case of a time-varying density, the
rate of change of the cost is not proven to decrease over time,
i.e. condition (6) does not hold. That is what the algorithms
presented in section II-B and in section II-C try to address.

B. TVD Cortes

In [4], a distributed coverage algorithm was designed in an
attempt to handle TVDs. The main idea was to try to design
a controller that could enforce,

dHV
dt

(p, t) < 0,∀p, t (6)

By making assumptions on the density function φ, the con-
troller can guarantee that. In [4], it was shown that using the

parallel axis theorem, the coverage cost could be divided in
two parts,

HV(p, t) =

N∑
i=1

Ji,ci(p,t) +

N∑
i=1

mi(p, t) ‖pi(p, t)− ci(p, t)‖2

(7)
where HV1 =

∑N
i=1 Ji,ci , and HV2 =

∑N
i=1mi ‖pi − ci‖2.

Ji,ci is the polar moment of inertia of the Voronoi region
of agent i. It quantifies the distribution of the mass in Vi
with respect to the axis (z, ci), i.e. axis z passing through
the centroid of Vi. HV1 only accounts for the contribution of
the TVD, and not of the agents as in HV2 .

It was then supposed that the TVD could verify the property,

dHV1
dt

= 0 (8)

In that case, by choosing,

ṗi = ci,t(p, t)−
(
k +

mi,t(p, t)

mi(p, t)

)
(pi(p, t)− ci(p, t)) (9)

where ft(x) =
∂f

∂t
(x) as a notation, it is then possible to have,

dHV
dt

= −kHV2 (10)

Supposing that the system can be controlled as a single-
integrator, the control law is given by,

ui = ci,t −
(
k +

mi,t

mi

)
(pi − ci) (TVD-Cortes)

where,

mi,t(p, t) =

∫
Vi(p)

φt(q, t)dq (11)

ci,t(p, t) =
1

mi(p, t)

(∫
Vi(p)

qφt(q, t)dq −mi,t(p, t)ci(p, t)

)
(12)

TVD Cortes is a controller that ensures local asymptotic
convergence to a CVT in the case where the density verifies
condition (8). Yet, as pointed out in [9] it is rarely the case
in time-varying environments, and it is even unclear how to
design such TVD [13].

C. TVD-D1

In [9], [10], an algorithm that did not make any assumptions
on the TVD was designed. As described in the original
work [9], the main idea was to track the CVT. Once the
agents have reached the CVT, i.e. p(t0) = c(t0, p0), where
c = (c1, . . . , cN)T , the controller was designed such that
ṗ(t) = ċ(t, p). It is then possible to write,

ṗ =

(
I2N −

∂c

∂p

)−1
∂c

∂t
(13)

DISTRIBUTED COVERAGE ALGORITHMS APPLIED TO DISTRIBUTED TARGET TRACKING - ROBUSTNESS EVALUATION, DECEMBER 4, 2020 5

where Ik is the identity matrix of size k × k. In order to
ensure that the agents converge to the CVT in the first place
a proportional term was added, as,

ṗ =

(
I2N −

∂c

∂p

)−1(
−k(p− c) +

∂c

∂t

)
(14)

Later in [2], another proof relying on an energy formulation
was used. The same control law was derived. If the agents can
be controlled as single integrators the control law is given by,

u =

(
I2N −

∂c

∂p

)−1(
−k(p− c) +

∂c

∂t

)
(15)

where u = (u1, . . . , uN)T .
As pointed out in [2], [9] the main issue is that the control

law presented in (15) is centralized. The inversion of I2N −
∂c
∂p does not make a distributed control possible. One way to
decentralize the control is by considering Neumann series. For
a matrix A ∈ Rm×m,m ∈ N∗,

(Im −A)−1 =

+∞∑
k=0

Ak (16)

as long as |λmax| < 1, i.e. the maximum eigenvalue of A has
to be strictly bounded by 1 in absolute values, otherwise the
Neumann series in not defined, since it diverges.

It is then possible to truncate the series at a chosen order.
To choose the order, one other observation on the structure
of ∂c

∂p was made in [9]. ∂ci
∂pj

accounts for the variation of the
center of mass of Vi due to agent j, located at pj . Vi is only
defined by its Voronoi neighbors Vi, and thus the centroid is
only defined by Vi. As a results if j /∈ Vi,

∂ci
∂pj

= 02×2 (17)

The matrix ∂c
∂p has actually the same block sparsity as the ad-

jacency matrix of the Delaunay triangulation corresponding to
the Voronoi tessellation V . The distributed one-hop controller,
i.e. using only the direct Voronoi neighbors of each agent, is
then given by a truncation at the first order, as,

u =

(
I2N +

∂c

∂p

)(
−k(p− c) +

∂c

∂t

)
(TVD-D1)

The controller TVD-D1 is an approximation of the con-
troller presented in (15). The controller in (15) ensures local
exponential convergence to a CVT [2], but not its one-hop
approximation. Its one-hop approximation will be as close to
the centralized control as |λmax| � 1. TVD-D1 is a distributed
algorithm, and does not make any assumptions on the TVD.
However, it does not not come with theoretical guarantees at
all. As showed experimentally in [9] and in this work, see
section III-G, the controller shows close performance to the
centralized controller. One obstacle in the implementation of
the controller TVD-D1 is the computation of the term ∂c

∂p ,
which is explained in section III-F.

III. DISTRIBUTED COVERAGE ALGORITHMS :
IMPLEMENTATION

This section presents the implementation of the algorithms
in section II. The reader should refer to the extensive in-
code documentation that is provided for more details, and
programming specificities.

A. Implementation method

The implementation of the algorithms described in II has
been done in Matlab. Elements given along with this work
(videos, code, . . .) are presented in appendix A, and instruc-
tions to launch a simulation are provided in appendix B. The
simulations coming along with this work use the package1

implemented for the support of the Robotarium, which is a
remotely accessible swarm platform that allows, when using
the Robotarium simulator, to test algorithms in simulation and
then deploy on the hardware platforms of the Robotarium [18],
[19]. The simulations are then more close to the real hardware
than pure mathematical simulations, as were done in [4], [5]
for instance. Thus, it is important to take the dynamics of the
robots into account for the simulation.

The control laws have all been normalized to avoid any
actuator saturation, using the function,

g :R2 → R2 (18)

u 7→ u

1 + ‖u‖
as was proposed in [4], s.t. ‖g(u)‖ ∈ [0; 1].

The agents were controlled as single-integrators. The dy-
namics of the robot is the one of a unicycle [4], [14], [19].
A Near-Identity-Diffeomorphism provided in the Robotarium
simulator is used to map the computed control law from the
single-integrator space to the unicycle space. Control laws in
the unicycle space have also been investigated, see [10].

Obstacle avoidance, i.e. avoidance of other agents and of
boundaries (the agents cannot leave the coverage area D),
are done using barrier certificates already implemented in the
Robotarium simulator [19]. The barrier certificates impact the
control laws. In some cases a CVT was not reachable because
of the barrier certificates (agents are too close). Yet, the barrier
certificates are necessary.

Since the algorithms are designed to be deployed on hard-
ware a special attention has been given to their spacial and
temporal complexity.

B. Assumptions

Although the control laws implemented in this work are
distributed in nature, they require information to be computed.
The implementation presented here computes this information
in a centralized way, i.e. Voronoi cells are computed in
a centralized way, and in the code, the different agents a
part of one class the controller class (LloydController,
TVDCortes, or TVDD1). As explained in [4] since the control
laws involve integrals, accuracy is essential. A fully distributed
implementation would be less accurate than a centralized

1https://github.com/robotarium/robotarium-matlab-simulator

https://github.com/robotarium/robotarium-matlab-simulator

DISTRIBUTED COVERAGE ALGORITHMS APPLIED TO DISTRIBUTED TARGET TRACKING - ROBUSTNESS EVALUATION, DECEMBER 4, 2020 6

implementation for the information necessary to the control
laws. A centralized computation for the necessary information
has been chosen since it does not impact the comparison of
the different algorithms with respect to their convergence to
a CVT, thus it is sufficient for the robustness evaluation pro-
posed in this work. In addition, no parallel implementation is
actually possible in the Robotarium simulator. On real robots,
algorithms would be launched in parallel on the different
agents. As a consequence, having a distributed implementation
for the voronoi cells would take more time, than it would take
on real agents. Nonetheless, ideas are given in IV to design a
fully-distributed implementation.

The implementation presented here tackles a single-target
tracking scenario, and does not contain a distributed estima-
tion mechanism. The integration of a distributed estimation
algorithm is discussed in V.

Agents are also supposed to be able to localize themselves
in a global reference frame R0. All the quantities, which need
a frame, have been projected to R0. For instance, each agent
knows its Voronoi cell in the frame R0.

The connection between agents is supposed to be repre-
sented by a complete graph. It follows that agents are supposed
to be able to communicate with all other agents, and as a result
with their Voronoi neighbors. Connection issues and dealing
with Voronoi neighbors, which are out of sensor range, are
not in the scope of this implementation.

C. Overview of the implementation

The code comes with five classes :
• VoronoiRegion.m : contains some information relat-

ing to the each Voronoi region and contains integration
schemes for the computation of the center of mass of a
Voronoi region.

• Target.m : class of the target that is tracked by the
agents. The target is not physical, i.e. only represented
through a density function that the agents try to track.

• LloydController: implements the Lloyd controller.
• TVDCortes: implements the TVD-Cortes controller.
• TVDD1: implements the TVD-D1 controller.

D. Lloyd’s algorithm

The expression of the Lloyd controller requires each agent
to be able to compute the centroid ci of its own Voronoi region
Vi.

In order to do so in a centralized way, the function Matlab
voronoin was used. The only issue is that the Voronoi
regions need to be bounded, and the basic Matlab implemen-
tation does not bound the regions. To obtain bounded Voronoi
regions in D, an artificial problem was defined, i.e. artificial
agents were added for each agent i in order to add to the
boundaries of the Voronoi region Vi the boundaries of the
polytope D. The implementation is detailed in the method
control of the controller classes.

Once the vertices of each Voronoi regions were known in
R0. The Voronoi regions had to be integrated to compute the
centroids. A bounding box of each Voronoi cell is integrated
instead of the entire coverage region D, and Riemann integrals

are used to compute the centroids [20]. Riemann integrals have
been used for all the integral quantities in this implementation.
A simple Riemann integral can be written as a summation over
the domain, as ∫

V

f(q)dq ≈
n∑
k=1

f(qk)∆q (19)

where n ∈ N/{0} is the number of samples in the region V .
Experimentally, ∆q = 0.1 m has been found as the optimal
trade-off between the control accuracy and the computation
speed. The integration can be found in the VoronoiRegion
class, as the centroid method.

E. TVD-Cortes

The controller TVD-Cortes is quite similar to the Lloyd
controller. The only difference is that more integrals are
needed in order to come-up with the final control law, and
these quantities take into account differential quantities with
respect to time. The integration scheme can be found in
the method region_integration_TVD_cortes of the
VoronoiRegion class.

F. TVD-D1
In TVD-D1 the most computationally cumbersome term to

numerically approximate was ∂c
∂p . From [10] the expressions

of the coefficients ∂ci
∂pj
∈ R2×2, can be derived in algebraic

form, if i = j,

∂ci
∂pi

=
∑
j∈Vi

(∫
∂Vi,j

φ(q, t)q (q−pi)T
‖pj−pi‖dq

)
/mi

−
(∫

Vi(P)
φ(q, t)qdq

)(∫
∂Vi,j

φ(q, t) (q−pi)T
‖pj−pi‖dq

)
/m2

i

(20)
and if i 6= j,

∂ci
∂pj

=
(∫

∂Vi,j
φ(q, t)q

(pj−q)T
‖pj−pi‖dq

)
/mi

−
(∫

Vi(P)
φ(q, t)qdq

)(∫
∂Vi,j

φ(q, t)
(pj−q)T
‖pj−pi‖dq

)
/m2

i

(21)
Algebraic forms were used for faster computations.

In order to compute a Riemann integral of ∂c
∂p a book-

keeping mechanism was needed to store the Voronoi neigh-
bors for each agent. The Voronoi neighbors were detected
by checking if two common vertices existed between two
Voronoi regions. The code is presented in the method
VoronoiNeighbors of the TVDD1 class.

Once the Voronoi neighbors were known for each agent, the
line integrals at the borders ∂Vi,j between Vi and Vj had to
be computed. To do so the diffeomorphism,

h :[0; ‖vi − vj‖]→ R2 (22)

s 7→ vj + s
vi − vj
‖vi − vj‖

was used. By doing so the segment was parameterized with
a real s and the line integrals were computed, changing in
(20, 21): dq = ds and q = h(s). The code can be found in
the compute_dcdp in the TVDD1 class. Experimentally, an
optimal integration step was chosen to be : ds = 0.05 m.

DISTRIBUTED COVERAGE ALGORITHMS APPLIED TO DISTRIBUTED TARGET TRACKING - ROBUSTNESS EVALUATION, DECEMBER 4, 2020 7

G. Comparison, and robustness evaluation on a tracking task

This section presents the results of the robustness evaluation.
1) Protocol: The robustness evaluation on the tracking task

described in III-G2 was evaluated in different ways. The
robustness of the different algorithms presented in II was tested
for an increasing target’s velocity (see Figure 1 for selected
results), a wrong estimate of the target’s velocity (see Figure 2
for selected results), a gradually increasing error on the target’s
position simulating the absence of a filtering mechanism (see
Figure 3 for a selected experiment), and finally the algorithms
were compared on hardware (see Figure 4 for a selected
experiment).

The protocol was to first test for different initial conditions
and configurations (number of agents, initial poses, target’s
state, noise, and control gains), they were generated randomly
to maximize the variety of the data collected and stayed iden-
tical for the different algorithms to compare. Representative
results of all the tests were then selected, and the same initial
configurations and conditions (number of agents, initial poses,
and control gains) were kept across all the tests in order
to maximize the comparability of the results. In the results
presented here k = 0.9 and N = 4, the initial poses are
provided along with this work in the initialPoses.mat
file. In the Figure 1, 2, 3, and 4 the time t is the simulation
time and represents real 0.033 s.

In order to quantify the robustness of the different algo-
rithms, the instantaneous coverage cost and the total simulation
coverage cost were used as metrics [10]. the instantaneous
coverage cost is given by, if only the time dependence is made
explicit since p = p(t),

HV(t) =

N∑
i=1

∫
q∈Vi(t)

‖q − pi(t)‖2φ(q, t)dq (23)

and the total coverage cost is given in continuous form as,

Htot(T) =

∫ T

t=0

HV(t)dt (24)

For more details on the different testing conditions, and
protocol, the testing framework is given in the files :
coverage_simulation_main.m for a manual test of one
algorithm or coverage_simulation_main_auto.m,
auto_test.m for an automated test of the different algo-
rithms.

2) Tracking task description: The tracking task involved a
single target. The target was not physical, and was represented
by a Gaussian like density function. The density function of
the coverage problem is then given as,

φ(q, t) = ae−(γ(x−xT)2+γ(y−yT)2) + b (25)

where, q = (x, y)T , xT , yT are the mean of the target’s
position, γ = 1/2σ2 and σ is the variance on the target’s
position (identical along both axis). a > 0 is a coefficient that
can be set to increase the attraction of the tracking task, and
b > 0 to increase the attraction of the uniform coverage [11].
In the results presented here a = 1 and b = 10−5.

In the results presented in this work, γ = 10 if it was not
changed as in Figure 3.

Since no estimation algorithm was implemented, for the
tests xT , yT were taken as the actual target’s position, and the
uncertainty on the position was added through the variance
only. If an estimation algorithm is added the TVD could be
chosen as the distribution function on the target’s position. b
should still be > 0.

The target evolves following a trajectory (position and ve-
locity) given by the Bernoulli Lemniscate 2D curve, expressed
as, (

xT
yT

)
=

 cos(t)

1 + sin(t)2

sin(t)xT

 (26)

For more details please refer to the Target.m class. This
trajectory was ideal since it covered most of the coverage area,
it describes an ∞.

3) Analysis: For the increasing target’s velocity test pre-
sented in Figure 1, one can observe that in case 1a (static
target), Lloyd and TVD Cortes performances are indistin-
guishable, they are performing slightly better than TVD-D1
for the first 800 iterations and TVD-D1 performs better after
800 iterations. It is consistent with the theory presented in
II, since with a uniform density function Lloyd and TVD
Cortes should exhibit local asymptotic stability. TVD-D1 has
not this theoretical guarantee, but the results shown here are
consistent with the one in [10], TVD-D1 is actually close to
its centralized version, since it has an asymptotic stability. In
all the remaining cases, where the velocity of the target is
gradually increased from case 1b to 1d, the observations are
the same. Htot increases when the target velocity increases,
with a significant increase in case 1d, which shows that the
faster the target goes the harder for the robots the tracking
of the exploration zone or the density function is. Increasing
the velocity of the target further would produce misleading
results, since the actuators would saturate.TVD-D1 performs
better than Lloyd and TVD Cortes in all the cases, and
TVD Cortes performs better than Lloyd in all the cases,
when looking at Htot. This can by explained be the fact
that Lloyd was designed for time-invariant applications. TVD
Cortes does not exhibit an asymptotic convergence, which is
consistent with the fact that the time-varying tracking density
violates the assumptions at the core of TVD Cortes. The
variations in H(t) of TVD Cortes and Lloyd illustrate the
violated theoretical guarantees. In all cases, TVD-D1 manages
to converge almost asymptotically. In case 1d H(t) stabilizes
slightly after 1000 iterations. Overall, TVD-D1 was far more
robust to increase in the target’s velocity. Although there is no
theoretical guarantees for asymptotic convergence for TVD-
D1, TVD-D1 exhibits an almost asymptotic behavior.

When the algorithms use the same wrong estimate of the
target’s velocity, as presented Figure 2, it can be noticed that
Lloyd is not affected, which is logical since Lloyd does not
use the estimate of the target’s velocity in its control law.
However, TVD Cortes and TVD-D1 are affected, since they
use that estimate in their control. This can be observed in
cases 2a and 2b. Although both TVD-D1 and TVD Cortes
exhibit oscillations, TVD-D1 oscillates less than TVD Cortes,
and even when the wrong estimate of the velocity is used the

DISTRIBUTED COVERAGE ALGORITHMS APPLIED TO DISTRIBUTED TARGET TRACKING - ROBUSTNESS EVALUATION, DECEMBER 4, 2020 8

total coverage cost is the lowest for TVD-D1. This observation
can be explained by the difference in the control laws of TVD
Cortes and TVD-D1. TVD Cortes only uses local information,
i.e. of its own Voronoi cell, in contrast to TVD-D1, which
uses information of its direct Voronoi neighbors. When ∂c/∂t
is not accurate, ∂c/∂p gives to each agent the knowledge of
how much the density is located in their Voronoi neighbors’
regions, which reduces the error induced by the wrong ∂c/∂t.
Overall, TVD-D1 is more robust to wrong estimations and
noise of the target’s velocity than TVD Cortes, and still
performs better than Lloyd.

In the case 3, where the zone of exploration expands, since
the uncertainty of the target’s location increases, TVD-D1
tracks the exploration zone better than Lloyd and TVD Cortes
as both H(t) and Htot corroborate it. TVD Cortes is worse
than Lloyd, which is due to the fact that the density function
violates the assumptions behind TVD Cortes. Overall, TVD-
D1 is more robust to noise on the target’s position.

The hardware experiment in Figure 4 is consistent with
the corresponding simulation results. TVD-D1 performs better
than TVD Cortes and Lloyd, and TVD Cortes is slightly
better than Lloyd. The difference observed in the data between
simulation and hardware, when comparing 1d and 4 may
be due to the noise in the actuators, and the difference in
initial poses of the agents. Even though the same initial pose
was given for simulation and hardware experiments, hardware
experiments have to take into account actuator and sensor
noise. It can be noticed that all algorithms performed better
in this hardware case. TVD-D1 shows an almost asymptotic
behavior.

All in all, the different robustness evaluations are sufficient
evidence to prove that experimentally, TVD-D1 is far more
robust for tracking tasks than Lloyd and TVD Cortes. It
can adapt to the velocity of the target, track the exploration
zone with more accuracy when the target’s position is more
uncertain, and compensate for noise and wrong estimates of
the target’s velocity. Nonetheless, it should be reminded that
Lloyd was designed for time-invariant tasks, and that the
tracking density violates the assumptions behind TVD Cortes.
The results found are actually quite logical. Overall, what can
be surprising is that Lloyd performs better than TVD Cortes
on tracking tasks, when considering all the robustness tests
conducted here. Among the state of the art in coverage control
presented here, TVD-D1 was shown experimentally to be the
most robust algorithm for target tracking.

IV. A FULLY DISTRIBUTED IMPLEMENTATION :
DISCUSSION

The content presented here was not implemented, and is
given as possible horizons for future works.

As explained in III-B, the Voronoi cells have been computed
in a centralized way. The concepts and implementation in
this work could be adapted to a decentralized setting, where
the communication topology of the network would not be a
complete graph, as for instance a proximity graph. Yet, it
may not be as optimal as the algorithms presented in [21]
to compute the Voronoi cells. Once we have a distributed

algorithm to compute the Voronoi cells, another question
remains : how does each agent know that its Voronoi cell
is complete, i.e. that it sees all of its Voronoi neighbors? As
discussed in [6], loosing Voronoi neighbors can have huge
impacts on the coverage performance. It is then crucial in a
distributed setting to make sure that the Voronoi neighbors are
visible to each agent.

In [5], agents adapted their sensor range to see all their
Voronoi neighbors. It was showed that it was possible to know
whether or not a Voronoi cell was complete in a distributed
way provided that the agents could modulate their sensor
range, which is not always the case. Other techniques have
been developed in [21]. The reader is referred to [21] for a
more extensive survey.

In this work another option was considered. Agents could
run a consensus algorithm in order to have a complete graph
as connection topology. This would require a centralized
clock, but once this first phase is validated, agents could
switch to a distributed coverage algorithm, and try to conserve
the connections with their Voronoi neighbors only. During a
coverage control, Voronoi neighbors may vary, but they usually
stabilize at some point depending on the density function. This
idea would need to be investigated further.

V. DISTRIBUTED ESTIMATION ALGORITHMS : DISCUSSION

The content presented here was not implemented, and is
given as possible horizons for future works.

When the target’s state is unknown it is necessary to have
an estimation algorithm. Since the implementation has to be
distributed the estimation algorithm has to be distributed. The
estimation will then benefit from the coverage formation. One
option that was considered was a Kalman Consensus Filter.
Other options are presented in [22]. For estimation algorithms
applied directly to the learning of unknown density functions,
[23], [24] are interesting works.

VI. CONCLUSION

In this work, existing coverage control algorithms have been
surveyed, Lloyd’s algorithm, TVD Cortes and TVD-D1 have
been implemented, and their robustness has been evaluated on
a single-target tracking task. Robustness was tested in different
ways. The velocity of the target was gradually increased,
wrong estimates of the target’s velocity were given to the
agents, and noise was added to the target’s position. No
theoretical guarantees are given on the performances of the al-
gorithms in the target tracking setting considered here. Lloyd’s
algorithm is a time-invariant algorithm, the TVD violates the
assumptions of TVD Cortes, and TVD-D1 is an approximation
of a centralized algorithm. Yet, it was shown experimentally
that, overall, the time-invariant Lloyd’s algorithm performed
better than the time-variant TVD Cortes algorithm. Lastly,
the most robust option for target tracking was experimentally
shown to be TVD-D1.

Now that a distributed coverage algorithm was chosen, to
design a fully distributed target tracking system, a distributed
algorithm would need to be integrated, and the Voronoi cells
would need to be computed in a distributed way.

DISTRIBUTED COVERAGE ALGORITHMS APPLIED TO DISTRIBUTED TARGET TRACKING - ROBUSTNESS EVALUATION, DECEMBER 4, 2020 9

(a) v = 0 m/s (b) v = 0.0424 m/s

(c) v = 0.0939 m/s (d) v = 0.133 m/s

Fig. 1: Robustness comparison of the different coverage algorithms for an increasing velocity v of the target and identical initial
poses (orientation, and position). In the different experiments the agents always started at the same initial poses (they were
scattered in the coverage area). The controller gains were all set to k = 0.9 (found to be working optimally in experiment),
N = 4 agents. The velocity of the target v was gradually increased and was kept under the maximal linear velocity of the
robots, Vmax = 0.2 m/s.

APPENDIX A
ARCHIVE DESCRIPTION

The archive given along with this work contains:
• A folder code: this folder contains the files necessary to

run the Matlab simulation. The Matlab files are :
– auto_test.m : a file that runs three successive sim-

ulations, one for each controller and plots the results.
– coverage_simulation_main.m : a file used to

run the simulation of one chosen controller.
– coverage_simulation_main_auto.m : a file

that is used by the file auto_test.m to run a full
test autonomously.

– data_processing.m : a program that displays the
results.

– LloydController.m, TVDCortes.m,
TVDD1.m: the classes implementing the controllers.

– VoronoiRegion.m, Target.m : other utility
classes.

There is also a sub-folder Results. This folder contains
the simulation results after running auto_test.m. It
was run before submitting this work. The .mat files are
Matlab data objects used to save or load information in
the programs.

• A folder videos containing the Robo-
tarium videos. It contains the videos in
target-tracking-comparison of the
experiments, which have produced the results presented
in Figure 4, along with 2 other videos showing a uniform

DISTRIBUTED COVERAGE ALGORITHMS APPLIED TO DISTRIBUTED TARGET TRACKING - ROBUSTNESS EVALUATION, DECEMBER 4, 2020 10

(a) ṽ = v + α1 (b) ṽ = v − α1

Fig. 2: Robustness comparison of the different algorithms to noise or wrong estimations of the target’s velocity. In the experiment
presented in this Figure, the velocity of the target was 0.133 m/s, N = 4 agents, k = 0.9, and the agents started at the same
initial poses and were scattered in the coverage area. The simulation where the agents had access to the right estimate of the
target’s velocity is Figure 1d. To be able to compare the results the same outlier values were added to the target’s velocity
for the different algorithms. Independent simulations were needed for all three controllers. The experiment shown here gives
a totally wrong estimation ṽ for the target’s velocity v, α = 1.5 m/s.

Fig. 3: Robustness comparison of the different algorithms to noise on the target’s position. In this experiment the velocity of
the target was 0.133 m/s, N = 4, k = 0.9, and the agents started at the same initial poses and were scattered in the coverage
area. The simulation where the agents had access to non degrading estimates of the target’s position, i.e. γ = 10 and the
variance was kept constant, is Figure 1d. This experiment models the absence of a filtering mechanism on the target’s position.
The variance σ was gradually grown and then stabilized after 1000 iterations to see how the different algorithms would behave.
Equivalently, the value of γ was gradually decreased, γ ∈ [1; 1000].

DISTRIBUTED COVERAGE ALGORITHMS APPLIED TO DISTRIBUTED TARGET TRACKING - ROBUSTNESS EVALUATION, DECEMBER 4, 2020 11

Fig. 4: Instantaneous coverage costs obtained in a hardware experiment. The simulation with the same initial conditions and
parameters is the Figure 1d. Videos for this test and for each controller are given along with this work.

coverage, and one with a density function describing a
line formation.

APPENDIX B
HOW TO RUN THE SIMULATION

To run this code you should download the Robotarium
simulator. Run init.m provided with the package to add the
Robotarium utilities to your current path, and then you can run
the code auto_test.m. It will run 3 successive simulations.
One for each controller. At the end the results will be plotted
on the screen and the results will be stored in the Results
folder. Should you want to add more agents, and change other
parameters of the simulation, the parameters are explained and
can be changed in the first section of auto_test.m.

REFERENCES

[1] H. Choset, “Coverage for robotics – a survey of recent results,” Annals of
Mathematics and Artificial Intelligence, vol. 31, pp. 113 – 126, October
2001.

[2] J. CORTES and M. EGERSTEDT, “Coordinated control of multi-robot
systems: A survey,” SICE Journal of Control, Measurement, and System
Integration, vol. 10, no. 6, pp. 495–503, 2017.

[3] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent
Networks, stu - student edition ed. Princeton University Press, 2010.
[Online]. Available: http://www.jstor.org/stable/j.ctt1287k9b

[4] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks: variations on a theme,” IEEE Transactions on
Robotics and Automation, 2002.

[5] ——, “Coverage control for mobile sensing networks,” IEEE Transac-
tions on Robotics and Automation, vol. 20, no. 2, pp. 243–255, 2004.

[6] Cortés, Jorge, Martı́nez, Sonia, and Bullo, Francesco, “Spatially-
distributed coverage optimization and control with limited-range
interactions,” ESAIM: COCV, vol. 11, no. 4, pp. 691–719, 2005.
[Online]. Available: https://doi.org/10.1051/cocv:2005024

[7] J. Cortes, “Coverage optimization and spatial load balancing by robotic
sensor networks,” IEEE Transactions on Automatic Control, vol. 55,
no. 3, pp. 749–754, 2010.

[8] S. Lloyd, “Least squares quantization in pcm,” IEEE Transactions on
Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[9] S. G. Lee, Y. Diaz-Mercado, and M. Egerstedt, “Multirobot control using
time-varying density functions,” IEEE Transactions on Robotics, vol. 31,
no. 2, pp. 489–493, 2015.

[10] S. G. Lee and M. Egerstedt, “Controlled coverage using time-varying
density functions*,” IFAC Proceedings Volumes, vol. 46, no. 27, pp.
220 – 226, 2013, 4th IFAC Workshop on Distributed Estimation
and Control in Networked Systems (2013). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1474667015402319

[11] L. Pimenta, M. Schwager, Q. Lindsey, V. Kumar, D. Rus, R. Mesquita,
and G. Pereira, “Simultaneous coverage and tracking (scat) of moving
targets with robot networks,” vol. 57, 01 2008, pp. 85–99.

[12] Y. Diaz-Mercado, S. G. Lee, and M. Egerstedt, “Distributed dynamic
density coverage for human-swarm interactions,” in 2015 American
Control Conference (ACC), 2015, pp. 353–358.

[13] J. Kennedy, A. Chapman, and P. M. Dower, “Generalized coverage
control for time-varying density functions,” in 2019 18th European
Control Conference (ECC), 2019, pp. 71–76.

[14] M. Santos, S. Mayya, G. Notomista, and M. Egerstedt, “Decentralized
minimum-energy coverage control for time-varying density functions,”
in 2019 International Symposium on Multi-Robot and Multi-Agent
Systems (MRS), 2019, pp. 155–161.

[15] A. Pierson, Z. Wang, and M. Schwager, “Intercepting rogue robots: An
algorithm for capturing multiple evaders with multiple pursuers,” IEEE
Robotics and Automation Letters, vol. 2, no. 2, pp. 530–537, 2017.

[16] H. Huang, W. Zhang, J. Ding, D. M. Stipanović, and C. J. Tomlin,
“Guaranteed decentralized pursuit-evasion in the plane with multiple
pursuers,” in 2011 50th IEEE Conference on Decision and Control and
European Control Conference, 2011, pp. 4835–4840.

[17] A. Pierson and D. Rus, “Distributed target tracking in cluttered envi-
ronments with guaranteed collision avoidance,” in 2017 International
Symposium on Multi-Robot and Multi-Agent Systems (MRS), 2017, pp.
83–89.

[18] D. Pickem, L. Wang, P. Glotfelter, Y. Diaz-Mercado, M. Mote,
A. D. Ames, E. Feron, and M. Egerstedt, “Safe, remote-access swarm
robotics research on the robotarium,” CoRR, vol. abs/1604.00640, 2016.
[Online]. Available: http://arxiv.org/abs/1604.00640

[19] S. Wilson, P. Glotfelter, L. Wang, S. Mayya, G. Notomista, M. Mote,
and M. Egerstedt, “The robotarium: Globally impactful opportunities,
challenges, and lessons learned in remote-access, distributed control of

http://www.jstor.org/stable/j.ctt1287k9b
https://doi.org/10.1051/cocv:2005024
http://www.sciencedirect.com/science/article/pii/S1474667015402319
http://arxiv.org/abs/1604.00640

DISTRIBUTED COVERAGE ALGORITHMS APPLIED TO DISTRIBUTED TARGET TRACKING - ROBUSTNESS EVALUATION, DECEMBER 4, 2020 12

multirobot systems,” IEEE Control Systems Magazine, vol. 40, no. 1,
pp. 26–44, 2020.

[20] J. Lebl, Basic Analysis: Introduction to Real Analysis II, 2020, chapter
10. [Online]. Available: https://www.jirka.org/ra/realanal2.pdf

[21] M. L. Elwin, R. A. Freeman, and K. M. Lynch, “Distributed voronoi
neighbor identification from inter-robot distances,” IEEE Robotics and
Automation Letters, vol. 2, no. 3, pp. 1320–1327, 2017.

[22] A. T. Kamal, J. A. Farrell, and A. K. Roy-Chowdhury, “Information con-
sensus for distributed multi-target tracking,” in 2013 IEEE Conference
on Computer Vision and Pattern Recognition, 2013, pp. 2403–2410.

[23] A. Benevento, M. Santos, G. Notarstefano, K. Paynabar, M. Bloch, and
M. Egerstedt, “Multi-robot coordination for estimation and coverage
of unknown spatial fields,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA), 2020, pp. 7740–7746.

[24] M. Schwager, J. Slotine, and D. Rus, “Consensus learning for distributed
coverage control,” in 2008 IEEE International Conference on Robotics
and Automation, 2008, pp. 1042–1048.

https://www.jirka.org/ra/realanal2.pdf

	Related works
	Uniform densities
	Time-varying densities
	Target tracking
	In this work

	Distributed coverage algorithms : description
	Lloyd's algorithm
	TVD Cortes
	TVD-D1

	Distributed coverage algorithms : implementation
	Implementation method
	Assumptions
	Overview of the implementation
	Lloyd's algorithm
	TVD-Cortes
	TVD-D1
	Comparison, and robustness evaluation on a tracking task
	Protocol
	Tracking task description
	Analysis

	A fully distributed implementation : discussion
	Distributed estimation algorithms : discussion
	Conclusion
	Appendix A: Archive description
	Appendix B: How to run the simulation
	References

