
Learning a Single Policy for Diverse Behaviors on a Quadrupedal
Robot using Scalable Motion Imitation

Arnaud Klipfel1 Nitish Sontakke1 Ren Liu2 Sehoon Ha1

Abstract— Learning various motor skills for quadrupedal
robots is a challenging problem that requires careful design
of task-specific mathematical models or reward descriptions.
In this work, we propose to learn a single capable policy using
deep reinforcement learning by imitating a large number of
reference motions, including walking, turning, pacing, jumping,
sitting, and lying. On top of the existing motion imitation
framework, we first carefully design the observation space,
the action space, and the reward function to improve the
scalability of the learning as well as the robustness of the
final policy. In addition, we adopt a novel adaptive motion
sampling (AMS) method, which maintains a balance between
successful and unsuccessful behaviors. This technique allows
the learning algorithm to focus on challenging motor skills
and avoid catastrophic forgetting. We demonstrate that the
learned policy can exhibit diverse behaviors in simulation by
successfully tracking both the training dataset and out-of-
distribution trajectories. We also validate the importance of
the proposed learning formulation and the adaptive motion
sampling scheme by conducting experiments.

I. INTRODUCTION

Quadrupedal robots can achieve various autonomous mis-
sions by overcoming rough terrains that wheeled robots
cannot traverse, but the control is not straightforward due to
its high-dimensional state space and under-actuated dynam-
ics. Roboticists have studied various approaches for legged
robot control, ranging from model-based control [1]–[4] to
learning-based approaches [5]–[8], which have demonstrated
impressive agility and robustness on various quadrupedal
robots. However, most of the prior works have focused on
the given specific task, such as robust walking, running, or
jumping, because they are governed by very different dy-
namics. These task-specific controllers often require manual
engineering based on the expert’s prior knowledge, which
can be either developing mathematical models for model-
based controllers or shaping reward functions for learning-
based algorithms. It requires even more effort if the developer
wants to improve the naturalness of the behavior.

One interesting approach is to develop a motion imitation
controller that can track the given reference motion, which
defines the task implicitly. For instance, walking and jumping
are two very different tasks, but motion imitation treats them
as the same task of tracking the corresponding motion. If
the reference is captured by a human or an animal, motion
imitation can also allow us to develop natural behaviors from

1School of Interactive Computing, Georgia Institute of Technology,
Atlanta, GA, 30308, USA. aklipfel3@gatech.edu,
nitishsontakke@gatech.edu, sehoonha@gatech.edu

2 Meta Platforms, Inc., USA, renl@meta.com. Work done while at
Georgia Tech.

Fig. 1. Our scalable motion imitation framework can learn a single policy
to execute many motor skills, from running (1st), turning (2nd), jumping
(3rd), and sitting (4th).

the original actor. One notable early work is DeepMimic pro-
posed by Peng et al. [9], which shows an impressive motion-
tracking performance on a simulated humanoid character.
Many researchers have extended this work to imitate a wide
range of motions on a simulated character by investigating
novel policy architectures [10] or introducing adversarial
learning [11], [12]. This motion imitation approach has been
investigated in the context of robotics as well to develop
natural motions [13], but it is limited to tracking a single
reference motion.

This paper investigates a scalable motion imitation frame-
work for a quadrupedal robot to track various motor skills

using a single control policy. For the preprocessing, we
carefully prepare all the reference motions by retargeting
the existing dog’s motion database, which results in 701
motion clips with 15 different motion types. Then we extend
the existing motion imitation framework [9] to improve its
scalability and robustness. We design a new problem formu-
lation, including a new observation space that includes future
and past references and a new reward function that does
not incentivize low-level kinematic tracking. In addition, we
propose a novel adaptive motion sampling (AMS) scheme
to learn all the trajectories without ignoring some outlier
motions, such as jumping, and also to avoid catastrophic
forgetting about the previously learned motor skills.

We demonstrate that our framework can learn a single
versatile motion imitation policy that can track a large
variety of reference motions. Our policy can even track
new out-of-distribution trajectories, such as a star-shaped
path or a motion with multiple jumps. By conducting an
ablation study, we show that adaptive trajectory sampling is
necessary to learn all the motor skills in the database. We
also demonstrate the robustness of the framework, which
is achieved by our novel learning formulation. Our key
contributions are summarized as follows:

• We propose novel techniques for greatly improving the
robustness and scalability of motion imitation.

• We showcase that our framework can learn a single
policy to track various challenging trajectories.

• We validate the proposed components by conducting
ablation studies.

II. RELATED WORKS

A. Quadrupedal Locomotion

The control of quadrupedal robots has been thoroughly
studied by many robotics researchers. One common approach
is to develop a model-based controller that captures the im-
portant characteristics of the robot’s dynamics using a mathe-
matical model and generates optimal control trajectories [1]–
[4]. While demonstrating impressive robustness and agility
on hardware, a model-based approach often requires manual
engineering to develop the proper dynamics model for the
given task. In recent years, researchers have showcased that
it is possible to learn robust locomotion policies using deep
reinforcement learning (deep RL) [5]–[8]. However, it is
also a well-known challenge that deep RL often requires
an extensive amount of reward shaping to obtain the best
quality policy that can be effectively transferred to the real
world. Therefore, the developed reward functions sometimes
have many different terms, up to nine or ten, to guarantee
symmetric, energy-efficient, cyclic, and effective gaits [14],
[15]. Therefore, developing a high-quality motion controller
for novel tasks still remains a challenging problem for both
model-based and learning-based approaches and requires a
lot of human effort.

B. Motion Imitation

Motion imitation is a problem formulation that aims
to track the given reference motion. Because the task is

Fig. 2. Motion dataset generation pipeline.

implicitly encoded in the reference, this framework allows us
to use a unified problem formulation for various tasks, unlike
standard task-based problem formulations. The early work of
Peng et al. [9] demonstrates that it is possible to train a virtual
human character to track a single motion in a physics-based
simulation. This research is followed by many other works
in computer animation [10]–[12], [16] to track a wide range
of motions. The robotic community also adopts the same
motion imitation framework to develop quadrupedal robot
controllers to achieve natural animal-looking motions [13].
Kim et al. [17] demonstrate a human motion interface to
control a quadrupedal robot by combining motion imitation
and motion retargeting. Escontrela et al. [18] show that
adversarial reward formulation of motion imitation can be
a good substitute option for complex reward functions.
Our work is also closely related to these state-of-the-art
contributions in both the computer animation and robotics
communities. We extend the motion imitation framework
to support a large dataset for quadrupedal locomotion by
proposing a novel adaptive sampling and policy design.

III. SCALABLE MOTION IMITATION

In this section, we will describe the proposed scalable
motion imitation framework to track more than 700 motion
clips as well as out-of-distribution trajectories with a single
policy. We first explain our data generation procedure in Sec-
tion III-A. Then we present our novel problem formulation in
Section III-B, which is designed to improve the robustness of
the existing motion imitation framework. Finally, we describe
our novel adaptive trajectory sampling method in Section III-
C, which is necessary to learn a large number of motion
trajectories.

A. Data Generation

The motion dataset contains 701 motion clips with 15
different motion types. We generate the dataset using our
motion generation pipeline (See Fig. 2). Every motion clip
in the dataset lasts for 10 seconds and is of 60 Hz frame
rate. For the random keyboard input commands and their
distribution, the pipeline interpolates them into a sequence
of 600 to simulate user interaction. Then we infer kinematic
data, such as joint angles, with the interactive motion gener-
ation framework [19], which is trained with a wolf character
skeleton.

Therefore, we need to retarget the motion of a wolf into
our A1 quadrupedal robot [20]. We apply the algorithm
implemented by Peng et al. [13], which pairs corresponding
key points from the source subject’s body to the target

Fig. 3. Jumping with different scaling factors.(Left: 1.0, Right: 0.825
(ours)).

Fig. 4. Different retargeted sit motions. Left: IK with hips and feet
restriction. Right (ours): Adjusted IK considering knee positions for sit
motions.

robot’s body, including the positions of the feet and hips,
and then performs inverse-kinematics (IK) [21] to fulfill the
morphological gap. The pipeline has many robot model-
specific hyperparameters that affect the results. For instance,
Fig. 3 shows that an improper coordinates scaling may
cause physically unreasonable front knee joint angles when
jumping. We also need to remove all the ground penetration:
therefore, our retargeting algorithm is aware of the motion
type to handle such special cases (See Fig. 4). We further
remove some artifacts, such as foot skating or jitterness, by
applying inverse kinematics and smoothing. The content of
the generated database is summarized in Table I.

B. Problem Formulation for Scalability and Robustness

Imitating the given reference motion is a popular approach
to developing a versatile physics-based controller. While
researchers traditionally have approached this problem using
model-based control [22], the recent advances in deep rein-
forcement learning offer an automated approach to learning
a tracking policy for a variety of motions. We mostly follow
the formulation of Peng et al. [9], while making a few
adjustments in the state, action, and reward function designs.
We define our problem as a Markov Decision Process with
reward function at time t, rt, action at, observation ot and
state st.

TABLE I
GENERATED MOTION CLIP DATASET SPECIFICATION

Motion Type Stand Step Pace Trot Gallop Jump
Number of Clips 1 1 200 50 1 200

Motion Type Turn Left Turn Right Sit Lie
Number of Clips 51 51 1 1

Motion Type Turn Left In-Place Turn Right In-Place
Number of Clips 25 25

Motion Type Triangle Trace Star Trace Random Mixed
Number of Clips 1 1 92

1) Observation Space: In our formulation, the observation
space consists of three components: the robot proprioceptive
data, some privileged data, and the reference motion data
to track. For each control time step t ∈ R (every 0.02s),
the robot proprioception is composed of the joint positions
in radians qt ∈ R12, the joint velocities q̇t ∈ R12 in
rad/s which are given by the encoders, the angular velocity
ωt ∈ R3 in rad/s which is given by the robot on-board
gyroscope. The policy has also access to some privileged
information that is usually not estimated on a robot, or
which requires some additional estimation than just pure
proprioceptive readings [23]. This privileged information is
composed of the Center-Of-Mass (CoM) xt ∈ R3 of the
robot with respect to (w.r.t) an origin frame (the same as
the reference data), the robot base orientation w.r.t the same
origin frame given as the full rotation matrix Rt ∈ SO(3),
and the body linear velocity at the CoM vt ∈ R3, expressed
in the inertial frame of the robot. The CoM position could
be estimated using a joint or visual odometry, as well as
the rotation matrix, and the velocity could also be estimated
using the accelerometer data [23]. The robot data is written
as: orobot

t = (xT
t , (Rt)

i,j∈[1,3]
i,j ,qT

t ,v
T
t , ω

T
t , q̇

T
t) ∈ R42.

(A)i,j refers to the coefficient (i, j) of the matrix A.
In contrast to other works [9], [10], the observation space

does not include the state of every joint and link of the robot
(i.e. twist information, orientation, and relative body position
w.r.t. the root joint) and contains only the base full state and
the joint angles. The policy has not access to a key frame
identifier or marker such as a normalized phase variable [9]
that is used to make the motion learning faster.

The reference motion vector m̄t ∈ R24×8=192 is
comprised of the target joint positions q̄t ∈ R12, the
rotation matrix R̄t ∈ SO(3), and the CoM position
w.r.t an origin frame x̄t ∈ R3. Then our observation
ot ∈ R234 is defined as the concatenation of the robot
data and the reference motion data for a short time
window, ot = (orobot

t
T
, m̄T

t−1.0, m̄
T
t−0.5, m̄

T
t−0.2, m̄

T
t−0.02,

m̄T
t+0.02, m̄

T
t+0.2, m̄

T
t+0.5, m̄

T
t+1.0). Note that we include

both past and future reference motions for learning efficiency.
We also exclude the current reference frame m̄t to avoid the
copy-and-paste behavior of the current frame and promote
broader exploration, i.e. adaptation of the low-level joint
positions of the reference to the robot and environment
dynamics.

2) Action Space: The action at ∈ R12 is defined as the
delta to a nominal (i.e independent of the reference and
fixed at all time) joint configuration of the robot, which
becomes the target position for the proportional-derivative
controller at each joint. The generated actions are further
smoothed by applying a moving average with a window
size of two. The nominal joint configuration is: am =
(−0.01, 0.75,−1.5, 0.01, 0.75,−1.5,−0.01, 0.75,−1.5,
0.01, 0.75,−1.5), which corresponds to a standing
configuration. Joint positions are bounded. θhip ∈
[−0.5, 0.5]rad, θthigh ∈ [−0.1, 1.5]rad, and θcalf ∈
[−2.1,−0.5]rad.

3) Reward Function: We design our reward function as
follows:

rt = w1exp(−k1||x̄t − xt||2) + w2exp(−k2||R̄t −Rt||2)
+ w3exp(−k3||ēt − et||2), (1)

where x, R, and e are the root position, the base orientation
represented as a rotation matrix, and the end-effector posi-
tions expressed in the origin frame. The other terms x̄, R̄,
and ē are the corresponding desired values from the reference
motions. Therefore, each term encourages to track the given
reference motion. w1, w2, and w3 are the weight vectors to
adjust the importance of each term and k1, k2, and k3 are
additional decaying parameters to tune the sensitivity of the
reward term. We set the parameters as w1 = 0.7, w2 = 0.5,
w3 = 0.15, k1 = 12.5, k2 = 20.0, and k3 = 40.0 for all the
experiments.

As discussed in III-B.3, we do not have a low-level
tracking reward term as [9], [10], [13], in order to prevent
overfitting on the kinematics, and as such we provide more
joint position information in the observation space to pas-
sively enforce the reference joint positions.

4) Early Termination: In contrast to [9], [10], which uses
early termination based on the CoM tracking performance
[9], or the reward function [10] in order to speed up
the motion tracking learning, and avoid poor performing
tracking policies. Our formulation uses simple contact-based
termination without penalty. The only allowable contacts are
the four feet with the ground. Won et al. [10] pointed out
that contact-based terminations prevented them from learning
motions which included self-body contacts. However, as our
final goal is to deploy learned behaviors on a real robot,
self-body contacts or inadmissible contacts are not desirable.
Our formulation, without penalty and prior in the action
space (joint residuals w.r.t. a nominal joint configuration)
allows the policy from learning certain motions where the
kinematic reference has inadmissible contacts, the policy
tries to satisfy the high-level reference state (CoM, End-
effector, body orientation) instead of trying to reproduce the
low-level reference data (joint positions) at any cost.

C. Adaptive Motion Sampling

Although many researchers have demonstrated successful
motion imitation using deep RL, it is still challenging to learn
a single policy for various heterogeneous locomotion skills
[9], [13], [24], including walking, turning, and jumping.
One difficulty is that the computation of gradients is highly
affected by a stochastic sampling of simulation rollouts,
which is impossible to cover the entire range if there are
too many reference motions in the database. Even worse,
the stochastic nature of deep RL can lead a policy to forget
about previously learned motor skills, which is referred to
as catastrophic forgetting.

Our Adaptive Motion Sampling (AMS) allows us to train
our policy from an unlabelled and unbalanced dataset. We
found that our policy even performed better at tracking the
reference motion data and producing natural joint motions
when trained directly on all the motion clips at once. No

pre-training is thus required. Having a rich set of motions to
train on prevents the policy from overfitting on the dynam-
ics and kinematics of certain locomotion skills, serving as
data augmentation, and promoting more general locomotion
strategies which can track a rich set of motions. As pointed
out in [25], complex skills emerge when trained on a rich
set of tasks. We propose a novel adaptive sampling scheme
to overcome these challenges. Our key idea is to maintain
two sets of the reference motions: U and S, which represent
unsuccessful and successful motions, respectively. At the
beginning of learning, we initially assign all the motions
to the unsuccessful group U and set the successful group
S = ∅. Sampling from these sets is done following a uniform
distribution, and without re-drawing so that after several
episodes the policy has been trained on the entirety of the
sets. For every 200 policy iteration, we evaluate the current
policy on all the motions and classify them into each group
again based on their performance. If the policy is able to
track the motion until the end without early termination, we
assign the given motion to the successful group S (resp. U).

Once the motions are classified into two groups, U and S,
we adjust the sampling of the reference motions. We sample
70 % of the reference trajectories from U , while taking 30 %
of trajectories from S. This mechanism allows the policy
to majorly focus on difficult reference motions that are yet
unsuccessfully learned while not forgetting already learned
motions.

IV. RESULTS

A. Implementation Details

We develop the proposed framework using RaiSim [26].
We use the integrated implementation of Proximal Policy
Optimization [27] for learning. Our neural network policy
has two layers of [256, 256] hidden neurons with LeakyReLu
activation functions. We select an A1 quadrupedal robot [28]
from Unitree as an experimental platform. We conduct all the
experiments using a desktop with AMD Ryzen Threadripper
3970X 32 cores CPU, and RTX 3090. Using AMS a policy
trained from scratch on 701 motions takes about 40 hours
with 100 environments, 30 threads, and episodes of length
10 seconds. For the motor gains, we choose a proportional
gain kp = 50.0 and a derivative gain kd = 2.0 in order
to support more stable learning and smoother motions. The
entropy coefficient is chosen as ϵ = 0.0001, the policy is
queried every 0.02s and the motion references are played at
a frequency of 1kHz.

B. Generating Diverse Motions

Our framework is able to learn a single capable policy that
can track a large number of trajectories with great diversity,
including walking, turning, jumping, sitting, and lying. Using
AMS, the policy can successfully track all 701 motions, and
≈ 90% of 47 long random mixed motion clips that are
used for validation and to test the ability of our policy to
generalize to out-of-distribution motions it has never seen.

An episode length is taken as 10 seconds. Most motions
last 10 seconds, but for instance, the star motion lasts 40

Fig. 5. A variety of generated motions using a single policy. 1st row: a sharp turn during a star-trajectory tracking task. 2nd row: multiple jumps in one
sequence. 3rd row: lying down and sit motions. Please refer to the supplemental video for the entire sequences.

seconds. Although the policy is only trained for the first
10 seconds of the motion clip, the policy can successfully
track the entire star motion, which supports its generalization
capabilities. The policy is able to re-use to some extent the
learned locomotion skills to track unseen motion references.
This makes the learning faster as training on longer motion
clips is not required. Instead, it is possible to train on
segments or individual locomotion skills present in a longer
motion clip.

The policy can track motions that contain a lot of transi-
tions between skills, and sudden changes in yaw, or speed
for instance. Indeed, it is able to track a short clip that
involves lying down and sitting to demonstrate generalization
over non-locomotion tasks. Finally, we demonstrate that our
policy can track a very long sequence that involves many
different components, including walking, turning, different
gaits, speed changes, and more. Note that it will be very
difficult to develop a single control policy to execute all
the motor tasks included in our testing sequences. Please
refer to Fig. 5 and the supplemental videos for qualitative
evaluation. We will also provide more quantitative analysis
in the following section.

V. ANALYSIS

A. Influence of Past and Future Target Information in Ob-
servations

Inspired by other works [10], [13], the policy is pro-
vided with future and past information of the reference to
track. The current reference frame is excluded in order to
incentivize the agent to interpolate between the different
keyframes in order to prevent the policy from overfitting
on the low-level kinematic reference data. Fig. 6 shows that
this configuration encourages a faster learning and higher
quality learned (smoother, more symmetric) joint trajectories.
Fig. 6 presents the CoM height tracking for a policy with
only the present reference information and a policy with
past and future information. First, we find that our design of

0.20
0.25
0.30
0.35
0.40
0.45
0.50

Co
M

 h
ei

gh
t z

policies around 4K policies around 22K

0.0 2.5 5.0 7.5 10.0
time (s)

0.20
0.25
0.30
0.35
0.40
0.45
0.50

Co
M

 h
ei

gh
t z

policies around 40K

0.0 2.5 5.0 7.5 10.0
time (s)

policies around 240K

present
past + future
reference

Fig. 6. Influence of the past and future trajectory. Our observation space
that includes the past and future enables faster learning: even at the 22K-th
policy iteration (top right), our design (green) tracks the reference motion
better than the baseline design (red). It also results in a better final policy.
At the 240K-th policy iteration (bottom right), our design can track all five
jumps while the baseline misses the last jump as highlighted in the blue
box centered at around 8.0 seconds.

past and future reference converges faster, as green curves
(ours) are closer to the blue-dotted reference motion than
red curves (the baseline design with only the current frame)
in early policy iterations. Even after a long-enough training
with 240k iterations, the policy with the baseline observation
design misses the final jump and decides to run through.
We hypothesize that past and future trajectory information is
critical to plan ahead dynamic jumping motions.

A qualitative comparison is presented in Fig. 7. The
baseline observation with only the current frame leads to a
reactive behavior that uses its rear legs awkwardly in order to
balance. In fact, we observe this behavior consistently over
all 200 jumping motions the baseline was trained on. On
the other hand, our observation space with past and future
reference information finds smooth and natural jumping

Fig. 7. Selected key frames of a dynamic jump tracking: the fastest jump
present in the dataset at a maximum CoM speed of 1.76m/s. The baseline
policy shows reactive and awkward behaviors for balancing (top) while
our observation design leads to more natural and smooth jumping motions
(bottom) .

4 3 2 1 0
x(t) (m)

2

1

0

1

2

y(
t)

(m
)

Policies trained with a lateral friction = 0.8
action space prior = 0.3
no action space prior = 1.5
no action space prior = 0.3
reference
action space prior = 1.5

Fig. 8. Generalization over unseen frictions of 0.3 (red) and 1.5 (blue). We
examine policies with and without action prior. The policies without action
prior (ours, solid lines) show better robustness, while the policy with action
prior (baseline, dotted lines) shows larger tracking errors and even cannot
complete the sequence. Circles represent the location where the episodes
end.

behaviors which can handle even multiple jumps, and even
exhibits alterations from the kinematic reference that look as
natural as the reference (See Fig. 7).

B. Influence of Action Prior

There exist two common choices of action spaces in the
literature of motion imitation. The first is to define it as the
delta to the current frame of the reference motion under the
expectation that the desirable PD targets are closer to the
reference motion (Action Prior). The second is to make it
independent from the reference motion, such as the delta
to the fixed nominal pose (No Action Prior, ours). In our
experience, a policy without action prior shows much better

robustness, particularly when it is combined with our joint-
agnostic reward design (Eq. (1)).

Fig. 8 illustrates well the generalization capability of
policies over unseen surfaces with low (0.3, red) and high
(1.5, blue) lateral friction coefficients (µ), whereas the policy
is trained with µ = 0.8. In our experience, learning with
action priors overfits to track the joint motions and does
not generalize well when the robot starts to deviate from
the desired trajectory. As a result, the policy exhibits high
tracking errors (dotted lines) and even terminates early.
On the other hand, our learning formulation without both
action prior and joint tracking objective allows the policy to
show more robust behaviors to complete complex star-shaped
trajectories (solid lines).

C. Adaptive sampling

Finally, this subsection analyzes the importance of our
adaptive motion sampling (AMS). In our experience, AMS
is critical to cover a large number (∼ 700) motions without
missing a few outlier motions, such as jumping, lying, and
sitting. For instance, we have 200 pace motions while having
only 10 of jumping motions. Therefore, naive sampling will
likely prioritize pace motions.

We plot (1) the average episodic reward over time and (2)
the number of failed motions in Fig. 9. From the perspective
of the conventional reward curve (top), it seems that AMS
performs suboptimally with slightly lower episodic rewards.
However, please note that AMS puts a policy in tougher
scenarios by sampling harder tracking problems more of-
ten, and we cannot directly compare the reward function.
Therefore, we also plot the number of the failed trajectories
out of 701 motions at the bottom of Fig. 9, as a more fair
comparison criterion. It shows that our AMS fails less over
by not ignoring some minority motions.

VI. CONCLUSION

We present a scalable motion imitation framework to learn
a single policy that can track a large variety of motions,
including walking, turning, running, jumping, sitting, and
lying. Starting from the existing motion imitation frame-
work [9] , we carefully design the observation space, action
space, and reward function to improve the effectiveness and
robustness of the final policy. In addition, we propose an
adaptive motion sampling scheme, which is designed to
focus on the learning of more challenging trajectories and to
avoid catastrophic forgetting of the previously learned skills.
We successfully train a very versatile single policy from a
large number of trajectories. We demonstrate that it can also
generalize well to novel trajectories to execute a complex,
long motion sequence that involves many different motor
skills. In addition, we also showcase that the learned policy
is robust against the change of environment parameters such
as lateral friction. We finally analyze the importance of
our problem formulation and adaptive motion sampling by
conducting a set of experiments.

There exist several interesting future research directions
that we want to explore. For instance, we plan to add

0 5000 10000 15000 20000 25000 30000
Training iteration

0.4

0.6

0.8

1.0

1.2

1.4
Av

er
ag

e r
ew

ar
d p

er
 ep

iso
de

 st
ep

AMS
No AMS
Maximum Reward per step

0 5000 10000 15000 20000 25000 30000
Training iteration

0

25

50

75

100

125

150

175

200

Nu
mb

er
 of

 m
ot

ion
 cl

ips
 w

ith
 ea

rly
 te

rm
ina

tio
n AMS

No AMS

Fig. 9. Adaptive Motion Sampling (AMS): comparison of training results
with a policy trained with AMS and one policy without AMS. AMS looks
suboptimal in terms of the episodic reward (top), but it actually successfully
tracks a lot more motions than the baseline without AMS (bottom).

more reference motions to the database for non-trivial tasks,
such as stair climbing, crawling, and walking over rough
terrains. However, the current data generation scheme of
motion retargeting will have limitations because it relies on
the existing public motion capture data set of a real dog. One
possible solution is to add more data using the off-the-shelf
trajectory optimization framework [29], which can generate
physically valid trajectories for various environments. Once
we increase the size of the database, we may need to
even further improve the scalability of the current learning
framework. It can be approached by adopting more paral-
lelized reinforcement learning algorithms [30], investigating
novel policy architecture [31], structuring the dataset [10] or
adopting the framework of adversarial learning [11].

Our obvious next step is to deploy the learned policy
on the real hardware of the A1 robot. We expect that
the learned policy needs to cross a large sim-to-real gap,
which can be approached by system identification or domain
randomization. However, domain randomization may also
increase the difficulty of the problem, and the learning may
not converge effectively. In this case, we may want to pretrain
a policy without domain randomization and fine-tune the
policy in randomized environments.

REFERENCES

[1] M. H. Raibert, Legged robots that balance. MIT press, 1986.

[2] H.-W. Park, P. M. Wensing, and S. Kim, “High-speed bounding with
the mit cheetah 2: Control design and experiments,” The International
Journal of Robotics Research, vol. 36, no. 2, pp. 167–192, 2017.

[3] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and
S. Kim, “Mit cheetah 3: Design and control of a robust, dynamic
quadruped robot,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 2245–2252, IEEE, 2018.

[4] D. Kim, J. Di Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic
quadruped locomotion via whole-body impulse control and model
predictive control,” arXiv preprint arXiv:1909.06586, 2019.

[5] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.

[6] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
robotics, vol. 5, no. 47, p. eabc5986, 2020.

[7] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor
adaptation for legged robots,” arXiv preprint arXiv:2107.04034, 2021.

[8] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.

[9] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deepmimic:
Example-guided deep reinforcement learning of physics-based char-
acter skills,” ACM Trans. Graph., vol. 37, jul 2018.

[10] J. Won, D. Gopinath, and J. Hodgins, “A scalable approach to control
diverse behaviors for physically simulated characters,” ACM Trans.
Graph., vol. 39, aug 2020.

[11] X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa, “Amp:
Adversarial motion priors for stylized physics-based character con-
trol,” ACM Transactions on Graphics (TOG), vol. 40, no. 4, pp. 1–20,
2021.

[12] X. B. Peng, Y. Guo, L. Halper, S. Levine, and S. Fidler, “Ase: Large-
scale reusable adversarial skill embeddings for physically simulated
characters,” ACM Transactions On Graphics (TOG), vol. 41, no. 4,
pp. 1–17, 2022.

[13] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine,
“Learning agile robotic locomotion skills by imitating animals,” arXiv
preprint arXiv:2004.00784, 2020.

[14] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk
in minutes using massively parallel deep reinforcement learning,” in
Conference on Robot Learning, pp. 91–100, PMLR, 2022.

[15] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal,
“Rapid locomotion via reinforcement learning,” arXiv preprint
arXiv:2205.02824, 2022.

[16] J. Won, D. Gopinath, and J. Hodgins, “Control strategies for physically
simulated characters performing two-player competitive sports,” ACM
Transactions on Graphics (TOG), vol. 40, no. 4, pp. 1–11, 2021.

[17] S. Kim, M. Sorokin, J. Lee, and S. Ha, “Human motion control of
quadrupedal robots using deep reinforcement learning,” arXiv preprint
arXiv:2204.13336, 2022.

[18] A. Escontrela, X. B. Peng, W. Yu, T. Zhang, A. Iscen, K. Goldberg, and
P. Abbeel, “Adversarial motion priors make good substitutes for com-
plex reward functions,” in 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 25–32, IEEE, 2022.

[19] H. Zhang, S. Starke, T. Komura, and J. Saito, “Mode-adaptive neu-
ral networks for quadruped motion control,” ACM Transactions on
Graphics (TOG), vol. 37, no. 4, pp. 1–11, 2018.

[20] Unitree, “A1 by unitree robotics.”
https://www.unitree.com/products/a1.

[21] M. Gleicher, “Retargetting motion to new characters,” in Proceedings
of the 25th annual conference on Computer graphics and interactive
techniques, pp. 33–42, 1998.

[22] T. Li, J. Won, S. Ha, and A. Rai, “Fastmimic: Model-based motion
imitation for agile, diverse and generalizable quadrupedal locomotion,”
arXiv preprint arXiv:2109.13362, 2021.

[23] G. Ji, J. Mun, H. Kim, and J. Hwangbo, “Concurrent training of a
control policy and a state estimator for dynamic and robust legged
locomotion,” IEEE Robotics and Automation Letters, vol. 7, pp. 4630–
4637, apr 2022.

[24] C. Yang, K. Yuan, Q. Zhu, W. Yu, and Z. Li, “Multi-expert learning
of adaptive legged locomotion,” Science Robotics, vol. 5, dec 2020.

[25] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa,
T. Erez, Z. Wang, S. M. A. Eslami, M. A. Riedmiller, and D. Silver,
“Emergence of locomotion behaviours in rich environments,” CoRR,
vol. abs/1707.02286, 2017.

[26] J. Hwangbo, J. Lee, and M. Hutter, “Per-contact iteration method for
solving contact dynamics,” IEEE Robotics and Automation Letters,
vol. 3, no. 2, pp. 895–902, 2018.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[28] “Unitree robotics.” http://www.unitree.cc/.
[29] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and

trajectory optimization for legged systems through phase-based end-

effector parameterization,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1560–1567, 2018.

[30] E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh,
M. Savva, and D. Batra, “Dd-ppo: Learning near-perfect pointgoal
navigators from 2.5 billion frames,” arXiv preprint arXiv:1911.00357,
2019.

[31] K. N. Kumar, I. Essa, and S. Ha, “Cascaded compositional resid-
ual learning for complex interactive behaviors,” arXiv preprint
arXiv:2212.08954, 2022.

