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SUMMARY

The goal of this thesis was to study and implement Deep Reinforcement Learning (DRL)

algorithms applied to quadrupedal legged locomotion. More model-based approaches can

also be considered to solve the problem (e.g. [1]), but this work focuses on using DRL

techniques as these approaches showcased incredible state-of-the-art results [2, 3, 4]. More

precisely, the goal was to learn a policy exhibiting a wide range of locomotion skills, i.e.

walking forward, turning, squatting, turning in place, and jumping for instance, and deploy

the policy in the real world. Most locomotion policies deployed in the real world only ex-

hibit single locomotion skills and can only solve very narrow locomotion tasks as a result.

A common way to expand the pool of available locomotion skills is to train narrow policies

for different skills and then combine them [5].

The first part of the thesis focused on reproducing the state of the art in robust walking

policies, which has been well researched and even solved recently [3]. In that case, the fo-

cus is to produce a walking gait (no jump or dynamical motions) to overcome challenging

terrains such as those that can be found in the wild. Methods using reward shaping were

tested first. In Reinforcement Learning (RL) the reward is the objective function, goal that

is being maximized. A reference-based method, the PMTG [6] was reproduced and pre-

sented in section 2.2, followed by a reference-free approach based on [2] and presented in

section 2.3. Reference-free approaches are equivalent to methods that do not use any guid-

ing signals for the learning except the reward, also known as learning from ”scratch”, i.e.

no prior knowledge is assumed on the structure of the actions, in that case, the joint motor

angles. Reference-based methods use a family of functions that they modulate, i.e. these
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techniques learn the parameters of these functions. Ultimately, the goal was to modify these

approaches to produce a jumping motion and later a vast repertoire of motions. Yet, on the

one hand, specifying the diverse behaviors solely through reward signals is challenging,

not intuitive, and does not lead to natural motions. On the other hand, finding a structure

for the motor angles to generate a diverse set of behavior is also challenging. The main

issue in the generation of a diverse set of motions is their specifications.

Kinematic references (i.e. recorded behaviors, motion capture data, synthetically gen-

erated reference motions) can be used to specify the core locomotion skills. The last part

deals with the design of an expressive policy (exhibiting different locomotion skills) based

on kinematic references generated by a Neural Network ([7], presented in chapter 3), which

is itself based on dog motion capture data. It is possible to break free from the exclusive

reward specification of the behavior. The problem of the reward shaping is then only con-

cerned with the kinematic reference tracking.

The main conclusion from this thesis is that in order to generate much more agile lo-

comotion skills such as turning in place, and jumping, for instance, using motion clips

describing the motion is much more intuitive than specifying the motion directly in the re-

ward. For simple behaviors such as walking approaches using pure reward shaping exhibit

good results, as presented in chapter 2, but when it comes to specifying a jumping behavior

for instance, and learning it, motion clips provide an intuitive mean. chapter 3 shows a

sample of agile locomotion skills learned by a single policy through motion clip data and

using DRL as in [4]. Another conclusion is when exclusively considering walking gaits to

compare the three tested approaches, walking gaits obtained with the motion clip approach

presented in chapter 3 look more natural.

Supplementary materials for this thesis such as video, code are available as explained

in Appendix A.
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CHAPTER 1

INTRODUCTION

Producing systems that could imitate the motions of animals is not a recent phenomenon.

As early as 500 BC, Archytas, a Greek philosopher, designed a flying pigeon [8]. Loco-

motion has been studied for centuries, trying to understand the biology behind the different

gaits of legged animals (e.g. trotting, walking, galloping) [9, 10]. It is only in the sixties

that engineers started designing legged robotic systems. The first one was ”Phony Pony”.

Since then plenty of commercial bipedal and quadrupedal robotic platforms have been de-

signed [11, 12, 13].

Marc Raibert was one of the first to lay down the modern foundations of the control of

legged robots [14]. Dynamically stable locomotion controllers were designed using control

theory and modeling a legged robot as a non linear dynamical system, and using heuristics

such as foot placements during swing phases (aerial phases of locomotion) in combination

with position controllers. Assuming the different bodies of the legged system are rigid

bodies, i.e. the different limbs and the torso cannot be deformed by any applied forces, the

dynamical equations of a legged system (composed of a torso and N limbs) can be written

as [15]:

Mu(q)q̈+ hu(q, q̇) = Ju(q)
T f

Ma(q)q̈+ ha(q, q̇) = τ + Ja(q)
T f

(1.1)

The first equation is the torso equation, which is the unactuacted part of the system and the

second equation describes the dynamics of the limbs, which are actuated at the joints with

motors. M denotes the inertia matrix linked to the acceleration of the system, and h a non

linear term linking the generalized coordinates q and the generalized velocities q̇. For a

legged system, the generalized coordinates contain the torso position and orientation in the

world frame and the Nj controllable joint angles. For common quadrupedal systems such
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as commercial platforms, q ∈ R18, and Nj = 12. J denotes the Jacobian matrix of the

system, projecting the contact forces f or ground reaction forces (GRF) to the torso or limb

frames, τ is the actuation torque vector.

The locomotion is divided into different phases, characterized by the phase of each leg:

in the swing phase the foot is not in contact with the ground, and in the stance phase the

foot is in contact with the ground. A foot can be in a swing or stance phase. Heuristics are

analytical relations found empirically, i.e. through experiments, and describe, and approx-

imate certain desired behaviors. Heuristics are commonly used in Reinforcement Learning

to guide the learning or to reduce the space of actions to learn. Raibert heuristics are still

used in some works to compute the foot or end-effector trajectories in a swing or aerial

phase as they are simple analytical relations [16]. [17, 16] used a Raibert heuristic in order

to produce the next desired foot placement pd,i ∈ R3, for the foot i ∈ [1; 4] based on the

desired body velocity ṗd, body ∈ R3, the current body velocity ṗbody , and pre-defined foot

position p0,i, as follows:

pd,i = p0,i + k (ṗbody − ṗd, body )

where k > 0 is a control gain that has to be tuned. If the robot is too slow, this heuristic

will shorten the robot stride (smaller steps), which will result in a faster motion of the legs,

and a faster gait so the robot can keep up with the desired body velocity. As in [16, 17]

position controllers are then producing the required torques for each actuator or joint of the

leg.

Recent advances in trajectory optimization and dynamic programming [15] enabled to

cast the locomotion gait generation (foot placement, joint position, floating base state) as

a linear or non linear program. Using different sets of approximations on the dynamics of

the robotic system Equation 1.1, the dynamical equations and constraints on the locomotion

(foot placements, swing and stance phase) can become convex and even linear, or quadratic

which makes the optimization faster. Using optimization techniques such as MPC (Model

Predictive Control) and QP (Quadratic Programming) locomotion gaits were generated for
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diverse robots [18, 19, 1, 20, 21].

The main disadvantage of model-based techniques, is the use of a dynamical model that

does not account for the full dynamic of the legged system, long optimization times, and

hand-engineered heuristics used to make the optimization process faster. Deep Reinforce-

ment Learning (DRL) was first applied to computer animation in the field of locomotion

and achieved impressive results in the generation of very acrobatic motions such as jumps,

cartwheels [4, 22, 23]. Yet, these works were confined to simulation. Recently, [3, 24, 25,

26] pushed the limits of DRL techniques by deploying policies learned in simulation on

wild terrain showcasing incredible robustness and adaptability.

Some works have tried to get the best of both worlds by combining trajectory-based and

DRL techniques [16, 27]. Trajectory-optimization based solutions do not require long train-

ing times, can work online, and can be proven to converge in some cases, while learning-

based techniques using DRL can truly push the limits of learned behaviors, producing

more agile and natural motions. DRL techniques also enable the extraction of meaningful

representations and fuse diverse sensory inputs for both exteroception (vision) and propri-

oception (encoders, Inertia Measurement Unit).

This work focuses on the study of DRL-based locomotion techniques. In order to re-

duce the training times a common technique is to use a set of parameters that the policy

can learn instead of learning the low-level motor space (joint target positions or motor an-

gles for all joints). The Policies Modulating Trajectory Generator (PMTG) [6, 3] learns the

parameters of a family of functions to this end. Other methods solely use reward shaping

to specify the motions and learn low-level motor actions directly [2]. Finally, this work

tackles the synthesis of an expressive locomotion policy, which could generate a wide set

of motions. Imitation Learning as in [4] is used to track motion clips (successive states of

a moving agent).

In all the experiments presented here the problem of learning actions for legged lo-

comotion is formulated as a reinforcement learning problem where the goal is to learn a
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policy π(a|o), where a is the learned action vector, and o the observation vector. As is often

the case in the real world, the learning problem can be partially observable, i.e. it is not

possible to recover the entire robot state s from the observations the policy has. Observa-

tions might also contain more than just the robot state, for instance, high-level commands

such as a target velocity or environment information. The robot state s are the generalized

coordinates of the robot, Center of Mass (CoM) pose, and joint positions. In Reinforcement

learning (RL), the transitions are formulated as a Markov Decision Process, where at time

t an action is sampled from the policy at ∼ π(at|ot). The policy is defined as a multivariate

Gaussian distribution. Given the action at and the current state of the agent st the agent is

then transitioned to state st+1 following a transition model F , as

st+1 = F(at, st, et)

et is the state of the environment that will impact the evolution of the agent based on its

dynamics. Computing the action at is done by providing a reward judging the relevance of

the taken action in the light of an objective function called the reward, rt = r(st, at, st+1).

For an entire trajectory of actions τ , the objective is written as,

J(π) = Eτ∼p(τ |π)

[
T−1∑
t=0

γtrt

]

where T ∈ R is the final step of the current episode, and γ ∈ [0; 1[ is the discount factor that

weights the impact of future possible outcomes due to action at. p(τ | π) is the probability

of having the action trajectory τ given the learned policy π. To solve the Reinforcement

Learning problem the Reinforcement Learning algorithm PPO (Proximal Policy Optimiza-

tion) [28] was used.

This work focused on quadrupedal locomotion, and mainly on the Unitree [12] plat-

forms A1 and Aliengo, which have a total of 12 joints or 12 DC motors (electrical motors)

that can be controlled. For each joint or DC motor one angle is controllable. Figure 1.1
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presents the morphology of the robot. The Raisim [29] physics engine and simulator are

used for the rollouts, i.e. sampling from the policy and simulation of the action outcome in

an environment.

Figure 1.1: Aliengo robot model from Unitree [12]. Each leg has a hip (joint closest to
the base), thigh, and calf (closest to the foot) motor angle that can be controlled. For the
remainder of the thesis the order in which joints are considered is: front right, front left,
rear right and rear left leg.
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CHAPTER 2

LEARNING TO WALK THROUGH REWARD SHAPING

2.1 Introduction

The first stage of the thesis focused on reproducing the state-of-the-art in robust walk-

ing policies. Reference-based and reference-free approaches have been implemented and

trained to obtain a smooth and natural walking policy. As in [6] a reference-based approach

consists in learning parameters of a function, while as in [2] a reference-free approach con-

sists in learning directly in the joint space. The goal was then to attempt adapting these

approaches to learn more complex locomotion skills.

2.2 Reference-based policy learning

2.2.1 Technical details

The PMTG consists of learning joint residuals, i.e. small variations, around a joint refer-

ence trajectory. Different task spaces could be considered, [30] defines the trajectory in the

task or cartesian space. For a greater degree of flexibility over the motion, the joint space

was chosen over the cartesian space. The agent learns the residuals around the reference

trajectory and learns the parameters of the reference trajectory, which enables more flexi-

bility in the motion and allows the policy to adapt the reference based on the observations.

The PMTG can be seen a guided learning where the reference trajectory or the family of

curves the policy learns to modulate acts like a scaffold used for more structured learning

than learning from scratch (only from reward signals) as in [2].

The action space A consists of the 12 motor angles or joint position residuals q̃ ∈ R12,

the gait frequency f , and the thigh and calf amplitudes residuals Ã for each leg. The di-

mension of the action space is dim(A) = 21. The final joint position target or the final
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actions applied to the robot can be written as:

qπ = qtg + q̃ (2.1)

where qtg is the reference trajectory that the policy can learn the parameters of (amplitudes

and frequency), and q̃ denotes the joint residuals. The joint residual action bound or abso-

lute maximum joint residual is chosen to be 1.5 rad as it enables to have the required range

to generate a walking gait. The reference trajectory for the thigh and calf joints was chosen

as:

θtg(t) = (A+ Ã)cos(2πft+ Φ0) + A+ θmin (2.2)

A =
(θmax − θmin)

2

The learned parameters are Ã the amplitude residuals for a total of 8, and the gait frequency

f , which is the same for each leg. The other parameters of the trajectory generator are

chosen by experience, such as the joint maximal and minimum angles θmax, θmin and the

initial phase offset ϕ0. For each learned gait (pronking, bounding, walking), here only

walking was learned, these parameters were chosen and manually tuned. The policy actions

were first removed from the control, i.e. fixed gait frequency, and Ã = 0, q̃ = 0. That

way, it was possible to ensure that the reference trajectory, describing a rough sketch of

the desired gait, was good enough. Having a good reference trajectory was found to be

crucial in making the PMTG work. Otherwise, the agent would first attempt to unlearn the

reference, but since the action space was bounded, it was often unsuccessful in doing so,

resulting in poor locomotion skills.

The reference trajectory Equation 2.2 was chosen to be periodic as a walking gait is

periodic. Such a form made it possible to identify learnable parameters.

Only the joint residual was learned for the hip, i.e. for the hip joint angles θtg(t) = 0,∀t,

which was found to be sufficient, and enabled to reduce the action space. The bigger the

action space the less robust the resulting policy can be [31]. It is then recommended to
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factor the action space as much as possible, as pointed out in [31].

The observation space was comprised of the height of the Center of mass (CoM), the

first column of the rotation matrix defined from the euler angles of the base wrt. the world

frame, the angular and linear velocity of the floating base with respect to the world frame,

expressed in the body frame (or inertial frame) and at the CoM, the joint position and

velocities, the leg phase (cos(2πft), sin(2πft))T , the body linear velocity expressed in

the world frame, the previous action at−1, and the joint position targets of the previous two

control time steps.

The policy was modeled as a Multi-layer Perceptron (MLP), as in [4] for instance and

as is commonly used in RL applications, of two hidden layers of dimensions (256, 128),

and Tanh activations were chosen in the hidden layers and the output layer to promote

smoother actions, smoother joint position and finally smoother locomotion. Using leaky

ReLU activations (defined in Equation 3.6) for the hidden layers led to high frequency and

jerky motions. Such an architecture is used in [30].

The reward is a sum of different terms that provide a signal on the learned gait:

rt =α1min(vxmax, vx)− α2∥Q−Q0∥22 − α3∥τ∥22 − α4∥q̇∥22

+ α5v
x
max exp

(
−1

2

(
vx − v̄x
vxmax

)2
)

− α6
|vx − v̄x|
vxmax

− α7|vy| − α8|vz| − α9∥qπ(t)− 2qπ(t− 1) + qπ(t− 2)∥22

(2.3)

The reward coefficients αi are all chosen to be positive. The reward coefficients/hyperparameters

were experimentally found to lead to an optimal policy:

α = (0.1, 1.0, 10−5, 10−4, 0.4, 0.4, 1.0, 1.0, 10.0)T

v denotes the body velocity in the world frame expressed at the CoM. vx is the current

velocity of the robot along the x axis of the world frame, vxmax is the maximal allowed

velocity. Q ∈ R4 denotes the body orientation in quaternions, and Q0 = (1, 0, 0, 0)T is the
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initial body orientation corresponding to a torso aligned with the world x axis having no

roll angle. τ are the motor torques produced from the joint angle commands or targets with

a Position-Derivative controller. Each term has its own use:

1. Prevents the robot from going too fast.

2. Incentivizes the policy from staying upright, i.e. not fall and limit the pitch and roll

angles of the base.

3. Limits the joint torques. Policies producing actions resulting in high torques are less

likely to be transferred. They produce noisier walking behaviors (harsher contacts)

and consume more energy.

4. Limits the joint velocities, promoting low frequency and smoother motions.

5. Rewards the agent for tracking the desired or target body velocity v̄x.

6. Penalizes the agent for any divergence from the body velocity tracking, which will

make the agent track the target body velocity faster than when using only term (5).

7. Limits lateral velocity to promote straight-line walking along the x axis.

8. Limits vertical velocity to promote straight-line walking along the x axis.

9. Promotes smoother joint targets by limiting the first derivatives of the joint targets.

The agent was trained using the on-policy RL algorithm Proximal Policy Optimization

(PPO) [28], and the simulations were performed using the simulator Raisim [29].

Adding front pushes to the floating base was found to be crucial in learning a smooth

and robust locomotion gait. It forced the agent to move its legs to move forward, and

have bigger strides that are more natural for a walking gait. Experimental data comparing

policies trained with different terrain friction coefficients, i.e. uniformly sampled for each

environment in [0.02; 2.0], and policies trained with front pushes, i.e. front forces applied
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Figure 2.1: Rear foot slipping of the policy without front pushes.

Figure 2.2: Front pushes during training removed the rear foot slipping/sliding as a slip-
ping/sliding foot does not generate enough ground reaction forces to make the robot move
forward against the front pushes.

in the opposite direction of the agent base motion and projected in the (x,y) plane and with

norms uniformly sampled in [0N ; 60N ] are available at this link. The videos show that

without front pushes or friction, the policy slides rear feet. Friction produced a slower

policy with smaller foot strides.

2.2.2 Results

The technical details presented in the previous section made it possible to obtain a reference-

based walking policy. The best policy is presented in simulation in this video, please click

10
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here to view.

2.3 Reference-free policy learning

2.3.1 Technical details

To avoid re-tuning the reference trajectory for different robots and morphologies, and to

avoid having to define different action bounds and reward coefficients (for the family curve

of the PMTG) for different locomotion skills, a reference-free algorithm based on [2] was

implemented. The main idea here was to clip the joint actions, whose bounds were chosen

to be for the hip 0.15rad, and for the thigh and calf 0.4rad, and to use a very general reward

that would work across different morphologies. The bound of the hip is chosen smaller here

as in the case of locomotion, the hip joint angle does not exceed 0.15rad.

The actions are joint position residuals around a fixed nominal joint position. The

policy learns both the mean and the standard deviation of the joint position residuals, hence

card(A) = 24. The standard deviation is only used for training as it promotes exploration

(a minimum standard deviation is fixed). The actions are bounded around the nominal

joint configuration to limit the space to explore and prevent some undesirable behaviors.

Actions are also filtered using an average filter of window length 5. The average filter does

an average of the 5 previous actions after bounding them individually. The average filter is

defined as:

at =

∑Nw−1
i=0 at−i

Nw

(2.4)

where Nw is the window length of the average filter, and at ∈ R12 is the vector of joint

positions at step t.

The observations are comprised of the joint positions and velocities, the roll and pitch

angles of the floating base, the body/floating base angular velocity, the relative foot posi-

tions with respect to the body expressed in the body frame, and the previous (t − 1) roll,

pitch, and angular velocity of the base, and relative foot positions.
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The reward is a summation of three different terms as presented in [2]:

1. Staying upright, balance: α1

(
1− Ω(

√
ϕ(t)2 + θ(t)2, w1)

)
, with w1 = atanh(

√
0.95)

0.4
,

ϕ, θ respectively roll and pitch angles.

2. Forward walking (in the body x axis direction): α2Γ(vx)

3. Moving the legs in the direction the robot walks: α3Γ(
1
N

∑N
i=1 v

x,i
swing ). N is the

number of legs. vx,iswing is the swing velocity (velocity in the aerial phase) of the foot

i projected along the x axis of the body frame.

Where the saturation function Ω(x,w) = tanh |xw|2 maps the input x ∈ R to [0; 1] with the

sensitivity parameter w. It can be seen as |x| when x → 0. Γ(x) = min((1−Ω(ωz, a))x, x),

with a = atanh(
√
0.95)

0.5
prevents the agent from being rewarded in the case where it moves

forward (body or legs) but has a high yaw rate. This promotes the learning of a more stable

locomotion gait that would follow the provided direction. For the experiments, the same

reward coefficients as in [2] were used, that is α = (0.1, 1, 0.5).

Finally,

rt = α1

(
1− Ω(

√
ϕ(t)2 + θ(t)2, w1)

)
+ α2Γ(vx) + α3Γ(

1

N

N∑
i=1

vx,iswing ) (2.5)

The architecture of the policy is an MLP of configuration (LayerNorm 256, 256, ELU,

100, ELU, 100, ELU, 24, Tanh). The standard deviation of the actions is bounded in

[0.3; 1.0] and the mean evolves in [−1; 1]. The LayerNorm layer learns to normalize its

input from the training data, and,

ELU(x) =


x, if x > 0

α ∗ (exp(x)− 1), if x ≤ 0
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where α = 1.

Although [2] uses SAC (an off-policy RL algorithm) to train their agents, PPO was used

here.

Using the same hyperparameters (reward coefficients and PPO training parameters)

as in [2], which they claim worked across different morphologies, it was possible to ob-

tain very natural and robust locomotion gaits as presented in subsection 2.3.3 and subsec-

tion 2.3.2, smoother (more natural) than the ones learned with the PMTG and presented

in subsection 2.2.2. The reference-free policy has higher footsteps and uses the hip joint

for balance. As presented in Figure 2.2 and subsection 2.2.2, the walking gaits generated

by the PMTG look more ”robotic”. The different robots trained in simulation were A1,

Aliengo, Anymal, Anymal C, and Laikago. Yet, these results (subsection 2.3.3 and sub-

section 2.3.2) were very hard to reproduce across different random seeds. Being able to

reproduce an experiment across different random seeds is crucial in RL, as RL algorithms

use stochastic gradient steps, and noise is often used in training to model sensor noise or

avoid overfitting (i.e. data augmenation). Fixing the random seed of a program ensures

that sampling from any distribution, in the same way, will give the same values. [2] uses 3

different random seeds, but does not tackle at all these issues of reproducibility. The agent

would often learn a bounding or pronking gait (robot jumping on the front or rear feet) and

not a walking gait depending on the random seed.

How to promote the learning of walking gaits? In order to make the learned gait more

robust, and help the robot escape the local minima corresponding to bounding or pronking

gaits, entropy was used. PPO is an entropy-based RL algorithm which means that it uses

in the objective an entropy term to maximize exploration [32]. It was found to increase the

reproducibility across different random seeds, but did not prevent the agent from learning

less robust gaits. An entropy of 0.01 was found to produce the best reproducibility, i.e.

policies trained with this value were more likely to produce walking gaits than other less

robust gaits. An Entropy value too high makes the learning too unstable, and a value that

13



is too low makes the policy more likely to learn a pronking or bounding gait. This value

was also found to produce the best comprise between exploration and unstable learning as

in [28, 33]. From [28] the entropy term can be defined as:

Ht = −β
∑
at∈A

π(at|ot)log(π(at|ot)) (2.6)

where β denotes the entropy coefficient and here β = 0.01, A is the action space. As the

policy is a probability distribution this quantity tries to maximize the number of different

produced actions given the current observations ot. This quantity is an entropy bonus as it

is always positive.

Even though the entropy made the agent explore more states during training, and thus

made the agent more likely to escape bad initial local minima [33], it was not enough to

learn a walking gait consistently. As was also working for the PMTG, front pushes were

used to promote the emergence of walking gaits. Front pushes along the x-axis of the iner-

tial frame of the agent were sampled in [0N ; 20N ] during training.

The learned policies were deployed on the A1 robot from unitree without falls. A com-

mon practice is to randomize the environment and the robot model, this is called Domain

Randomization (DR) [34, 3], sometimes referred to as Dynamics Randomization when the

randomized parameters are part of the robot model. The quantities that are randomized

here are the control latency (time between observation and when the robot is actuated),

the gains, and the inertia (mainly the mass of the trunk). Before randomizing too much,

the idea is to see how well the raw policy can perform on the hardware without any DR.

[35] showed that it was possible to deploy policies without DR. Too much DR can harm

the performance of the policy and produce very conservative policies. For instance, high

contact forces can emerge.

Since A1 is not a real-time control system control times can vary. Every time a position

command is sent to the DC motors, the time delay will change. The main problem when
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deploying is to deal with this asynchronous part that arise from the communication between

the high-level computer (Jetson Xavier), the low-level computer, and finally the DC motors.

These latencies are hard to predict. Without DR, control times were synchronized on the

robot by adding time artificially if there was less latency. Of course, sometimes the latency

is too big and the synchronization did not work. The randomization of the control latency

is then crucial to deployment. The idea is to train a policy with a likelihood of 0.3 to repeat

the previous command at at time t. A real number is uniformly sampled in p ∈ [0.0; 1.0]

and if this number p < 0.3 then at = at−1. From the results obtained on the hardware and

presented in subsubsection 2.3.3, it was found that synchronizing control times as much

as possible and randomizing control times was the most important. Other quantities were

randomized such as mass, friction, proportional gains, but it did not improve the deployed

policy. The mass was sampled following a gaussian distribution centered around the robot’s

true mass and with a standard deviation of 0.05kg for each new environment, as well as the

friction uniformly in [0.04; 2.0], and the proportional gain in [20.0; 50.0]. The random-

ized parameters were tested in isolation and together without increasing the transferability

successes.

2.3.2 Results: Policy in simulation on multiple robots

In order to prove the generality of the approach, which is a reference-free one, different

policies were trained for different robots. Click here to download the videos. The robots

that were tested are: A1, Aliengo, Anymal B, and Anymal C. The policies were able to

learn smooth walking behaviors for each morphology. These policies are not randomized

and were not deployed on hardware. Only deployment on A1 was tackled.

2.3.3 Results: A1 walking policy

This section presents the best policy that was deployed on hardware. Simulating control

delays during training made it possible to deploy a policy on hardware without falls.
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Simulation

Click here to visualize the policy in simulation. Figure 2.3 presents the evolution of the

average per step reward of a policy trained with delay randomization. The policy was

successfully deployed as presented in subsubsection 2.3.3.

Figure 2.3: Average reward per control step for the training of the reference-free policy,
which has been delay randomized and deployed on A1. The horizontal axis is the number
of training iterations.

Hardware

The policy was deployed in different environments to evaluate its robustness and adapt-

ability. Videos of the deployments can be downloaded at the following link. Performances

between the 3 tested environments are similar, i.e., deployment without falls. The main is-
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Figure 2.4: Hardware deployment of the walking policy.

sue with the deployed policy in all three environments is the drift to the right that appeared.

The policy did not walk straight. It seems that this drift is only worse in the real world.

Interestingly, the drift is bigger when the robot is tested on a hard floor than on a carpet.

This drift is not due to transfer as it is also present in the simulation. One thing that

changed is the gains. In order to promote the most compliant and thus smooth and natu-

ral behaviors, the lowest possible gains are used in simulation as well as on hardware. In

simulation kp = 25, kd = 0.2, and in the real-world kp = 40, kd = 0.5. Testing the policy

in simulation with the real-world gains produces the same behaviors observed in the real

world, the same drift. The test video can be downloaded at this link. Even training the

policy with real-world gain did not solve this issue.

Work that tries to enforce symmetry in the simulation of the taken actions could be

explored further as presented in [36], another idea would be to condition the policy based

on the walking direction, making the walking direction an observable parameter of the

learning problem.

Conclusion

Both the reference-based and reference-free approaches produced walking policies in sim-

ulation. The reference-free policy is smoother and more natural in simulation as shown
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by the videos of the learned walking gaits. The reference-free policy has higher footsteps

and uses the hip joint for balance. This is why only the reference-free was deployed on

hardware. Except for the drift exhibited by the learned behavior, the learned reference-free

policy was deployed on hardware without falls.

However, these techniques have been applied unsuccessfully to produce more expres-

sive locomotion skills. These techniques can produce robust walking behaviors but lack

generality for more complex locomotion skills. For instance, how is it possible to specify

the transition between the walking and aerial phases in a jump? How is it possible to make

it look natural? It seems that finding a way to specify the behavior is key. The next chapter

tackles the generation of such skills through motion clip imitation.
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CHAPTER 3

LEARNING EXPRESSIVE LOCOMOTION SKILLS THROUGH MOTION

CLIPS

3.1 Introduction

Biological systems exhibit an infinity of locomotion skills and their variations. They can be

creative in composing them together, and learn new skills. In short, they can be expressive.

Even though recent approaches produce robust walking policies on real-world terrains [3,

37], and more diverse locomotion skills are tracked with individual policies mostly in sim-

ulation [38, 4, 39], they remain narrow in their scope. Rare are works that tackle generating

expressive locomotion policies outside of a lab environment.

The papers, which deal with the latter problem, often limit their repertoire of motions

(choose only similar motions, not acrobatic, static, or agile ones), use massive datasets

of motion capture data (reaching thousands of motion clips for some skills), which are

sorted or clustered before training to train different policies for each individual locomotion

skills or motion clips, which exhibit similar kinematic trajectories. Most work do not even

explore the composition of the learned locomotion skills and tackle the deployment of in-

dividual policies to the real world. Lastly, the state-of-the-art approaches, which learn to

compose the learned skills, fragment the learning too much (training single policies for dif-

ferent skills), limiting the size of the locomotion skill repertoire, limiting the generalization

capabilities, limiting the learning of natural and smooth transition between skills, making

the deployment of the final policy harder (deployment is rarely tackled in that case), and

limiting its evolution (adding new skills).

[5] is closest to the goal of this work. The latter paper uses 8 pre-trained experts based

on reference-free reward shaping and composes the different skills with a gating neural
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network, referred to as a Mixture of Experts in the literature [5, 4]. The learned locomo-

tion skills are very close in nature, which makes the transitions easier to learn. One of our

insights is that to achieve expressive locomotion as seen in biological systems, learning a

vast repertoire of skills and their transitions is crucial. Transitions are very hard to specify

through reward shaping techniques, motion capture data or just any motion data, which

could be artificially generated, is much more suited to that task. Motion data is likewise

crucial to specify skills as some more agile and acrobatic skills are intractable to reward

specify. In that sense, this work looks at the problem through the lens of animation us-

ing motion capture data/motion data to specify behaviors and transitions as in [4]. Only

a single policy is trained to learn the different skills. In the animation literature, motion

capture data are often clustered beforehand to train a policy on each motion capture data

cluster (clusters can different skills). As expressiveness requires a variety of motion skills

and thus varied data, our approach prevents any manual preprocessing after the kinematic

retargeting. Kinematic retargeting is the phase that adapts the motion data for the kinematic

of the robot, which is trying to imitate the data as the data could be generated from another

quadrupdal morphology). Motions are gathered in one single dataset.

Our second insight is that training information can be used to figure out a clustering,

and based on this information, a training rule can be devised: what can be trained together,

can be clustered together. Since the clustering is done before the actual training as in [38],

it is solely based on kinematics, or manually designed criteria [4]. Using the training data

it is possible to cluster motion clips based on kinematics and dynamics and to automate the

clustering based on the agent progression. Different from a curriculum learning approach

[40], focusing on mastering one task, this approach exploits learning different skills simul-

taneously. In addition, our approach develops the policy more iteratively. Usually, it is

either from the lens of animation or from the lens of robotics. The first stage of the policy

training focuses on learning to imitate locomotion skills, and learning to transition using

privileged information based on Learning-By-Cheating [41]. The second stage focuses on
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the deployment of a single policy.

In summary the main contributions are expected to be (not everything has been imple-

mented at the time of the writing):

• Kinematically re-targeted motion capture dataset based on MANN [7].

• Single policy and dynamical controller, which can track a variety of locomotion skills

based on a dynamic clustering approach.

• Real-world deployment based on Learning-By-Cheating [41].

3.2 Technical details

This work was realized in collaboration with Nitish Sontakke and Ren Liu. This thesis

solely presents the contribution of this author.

3.2.1 Reference motions

The reference motion capture data are kinematic trajectories generated by the pre-trained

NN provided with the code of [7]. By modulating the commands of the NN it is possible

to generate a diverse set of locomotion skills: trotting, walking, turning while walking, and

jumping. The targets are kinematically re-targeted to A1 for the tracking. The original

reference trajectory sampling frequency is 60hz. The original trajectory is interpolated to

be at 100hz for A1.

Other reference motions such as turning in place, standing on the four feet, standing on

rear legs, laying, and squatting are manually generated.

3.2.2 Observation space

The observations comprise relative link positions and orientations with respect to the root

joint of the robot, link linear and angular velocities as in [4]. For the A1 robot, the root joint

is a frame with origin the center of mass of the floating base and oriented with x looking
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towards the front legs and z looking upwards. [4] uses a phase variable in the observations

to improve the tracking of periodic motions. Since our reference motions are not always

periodic and the phase variable is similar to a frame identifier or index in the reference

motion capture data, it was removed from the observations. Having a frame index in the

observations did not show any improvements on the imitation learning performances in

our case, and can cause the policy to link the frame with the action, which could lead to

some form of overfitting. In that case, the policy would not be able to imitate the same

motion capture data if the frames are shifted. The policy should link instead the robot

state to the action because it is more successful for zero-shot generalization. Observations

contain the generalized coordinates and velocities of the robot. These latter quantities are

crucial to achieving good imitation performance. Based on [38] the future information of

the reference trajectory is provided for the current target and 3 future steps at 20ms, 80ms

and 1s in the future. For all these future steps the CoM and the end-effector positions,

both expressed in the world frame, provide enough information on the reference for high-

performance tracking.

The future reference information was shown to be critical to avoid drift from the refer-

ence. Tracking error tends to accumulate more and more without. Other quantities from the

reference trajectory could have been given to the agent, such as the reference orientation of

each link, the full generalized coordinates, the base orientation, and the joint positions for

instance. End-effector positions and CoM position are the quantities from the reference that

were crucial in limiting the drift, and since it is better to have a more compact observation

space, only these quantities were given to the policy.

3.2.3 Reward

The reward is similar to [4]. It ensures tracking performance as well as motion quality. The

imitation learning produces a dynamically feasible motion from a kinematically feasible

motion. Four dense learning signals are used. The individual reward terms except the
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penalty are bounded and positive.

An orientation term ensures that each rigid body of the robot tracks the rigid body of

the reference motion.

ror = αor exp

(
βor

∑
j

(Qj ⊖Qref,j)
2

)
(3.1)

where j iterates over all the rigid bodies of the robot, and Q denotes the quaternion repre-

sentation, ⊖ the quaternion difference as defined in [4]. Qj denotes the quaternion repre-

sentation of the j-th body orientation wrt. the root joint as defined in [4].

An end-effector term ensures that the reference end-effector positions are tracked.

ree = αee exp

(
βee

∑
i

∥pi − pref,i∥2
)

(3.2)

where i iterates over the 4 end-effectors and p denotes the end-effector position w.r.t. the

floating base and expressed in the world frame.

A CoM term ensures that the CoM of the reference is tracked. c denotes the CoM

position.

rcom = αcom exp
(
βcom∥c− cref∥2

)
(3.3)

Lastly, an action penalty term ensures that the learned joint residuals stay as close as pos-

sible to the reference joint trajectory.

rpen = αpen∥Φ−Φref∥2 (3.4)

where Φ denotes the joint positions.

For the policy tested in section 3.3 the reward coefficients producing the best tracking
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results are:
αor = 0.65, βor = −2.0

αee = 0.15, βee = −40.0

αcom = 0.7, βcom = −12.5

αpen = −0.005

(3.5)

Contrarily to [4, 38] the reference velocity is not used for training. Neither in the reward

and nor in the observations as it is not provided directly by the motion clips. Differentiating

the joint positions to compute the joint velocities results in noise, as differentiation adds

high frequencies, resulting in higher frequency actions and even a misleading signal for the

policy, which resulted in unstable learning.

3.2.4 Action space

The policy outputs joint targets, which are then tracked using a PD controller (kp = 100,

kd = 4). The actions are not absolute, but relative. The policy learns residuals w.r.t. the

reference joint angles. It makes learning easier. The actions are bounded to make the prob-

lem even easier and make convergence faster. The bounds are 0.4rad for the hip joints and

0.6rad for the thigh and calf joints. The hip was limited a bit more since rare are motions

that present huge hip angles. But the algorithm would also work with a bigger bound.

To avoid high frequencies in the actions, resulting from the agent exploration in the ac-

tion space and also the high dimensionality of the observation space, the policy actions are

filtered. An average filter of window length 2 was the best compromise between motions,

which are too sluggish and too jerky.

3.2.5 Architecture

The architecture of the policy was kept as small as possible to promote generalization and

reduce overfitting on the data, but was chosen big enough to be able to solve the given tasks.
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The policy is composed of 2 layers: [256, 256]. Activations are LeakyReLU expressed as:

leakyReLU(x) = max(β ∗ x,x), x ∈ R (3.6)

where β << 1 is a positive constant.

3.2.6 Training

The RL algorithm used for training is an on-policy one, Proximal Policy Optimization

(PPO) [32]. The framework when trained on individual motion types achieves incredible

performance as presented in Appendix C. Appendix C shows the tracking performance of

the trained policy on in-distribution (i.e. motion clips it was trained on). More experimental

data is available this link, including videos.

Since we have a diverse set of motion capture clips, and among them some motions,

which require self-body contacts such as standing on the rear legs, using the conventional

body contact early termination is a dead-end. As in [4, 38] a reward-based termination is

used. If the reward is not high enough then the episode is terminated. Giving a termination

penalty to the agent was not necessary. Rather than using a termination criterion based on

the entire reward as in, [4, 38], only the CoM reward term is used. It is also possible to

define a threshold for the end-effector and orientation rewards. This choice was motivated

by the fact that too much termination leads to local minima, and using one tracking quantity

if possible enable the agent to explore more behaviors, and limits the manual thresholding

that would occur by using the entire reward, i.e. the more thresholds there is to define,

the more manual tuning there will be. Finding this threshold can be hard since it can vary

from motion to motion, and if using a threshold for each reward term, the agent might be

constrained too much from the start to learn anything (local minima). The thresholding

could be automated, increasing the minimum performance to achieve gradually.

The training is much harder when a single policy is trained on a diverse set of motion
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capture data. The issue is primarily the unbalanced dataset, i.e. some motion types are

more represented, which will bias the policy toward learning an overfitted strategy for these

types of motions. Instead of clustering the motion clips right away as in [38], the training

performance is used as a clustering criterion. It was noticed that the policy would tend to

learn some motions together at the start, but then overfit on these motions and never learn

the others. In order to overcome that, an adaptive sampling technique is used. Different

from a curriculum learning where it is a variation of one single task, here the agent is

trained on all the locomotion tasks or locomotion types first (uniform sampling). Once

some motions are well tracked, a bucket with these motions is formed and another with

the unsuccessful motions. At each new episode each environment samples a motion clip to

track. Drawing from the success bucket is only possible for a fraction of the environments,

and other samples from the failure bucket. Once a motion is drawn in the failure bucket it

cannot be placed back. This leads the agent to remember the learned motions, while not

overfitting them and injecting novelty.

Different criteria can be defined to sort motions in these buckets. The early termination

information is used here. If the motion clip cannot be tracked until the end it is a failure,

else a success.

3.2.7 Dynamic clustering

What can be learned together, is similar in nature, and can be clustered together. Using the

information of which motion clips are successfully tracked, motion clusters can be defined,

and even used to bootstrap other policies.

3.3 Results

At the time of the writing, a single policy that could imitate diverse locomotion skills

was obtained. The policy was trained on one single motion clip from different types of

motions, that is jumping, trotting, walking, walking and turning, turning in place, rear-leg
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Figure 3.1: Key frames of the trained policy imitating a dynamic jump reference.

stand, crouching, sitting, stepping. Experimental data, videos of the tests of the policy in

a simulation environment can be downloaded at this link. Figure 3.2 shows the training

curve of the policy, i.e. the evolution of the total per-step reward throughout the training.

When tested in-distribution, i.e. on motion clips that the policy was trained on, the

policy was able to track all the motion clips entirely. Appendix C presents the tracking

performance for the trained policy on a dynamic jump.

To make sure that the policy did not overfit the training data. The out-of-distribution

performance was tested on all the available data, i.e 554 motion clips composed of walking,

trotting, turning and walking, and jumping motions. The policy was not trained on these

motions. Appendix D presents the results. Trained on only 10 motion clips the policy was

able to generalize successfully (track the motion clip until the end with high quality) to 250

motion clips (almost half of the dataset).

The other half of the out-of-distribution dataset will be tracked successfully using an

adaptive sampling scheme that will enable the use of more training data and avoid biased

policies toward more represented motion types.
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Figure 3.2: Average reward per control step for training a policy on one motion clip of dif-
ferent motion types. The horizontal axis is the number of training iterations. The maximum
achievable reward is 1.5. The achieved reward produced an acceptable tacking performance
as presented in Appendix C, i.e. the policy produces the desired transitions and motions
with high footsteps and a stable torso.
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3.4 Conclusion

Preliminary results are very promising. Once the adaptive sampling and the dynamic clus-

tering are implemented this work will get closer to a possible contribution. As shown in

Appendix D, the policy actions are smooth, and torques are within the acceptable range (cf.

Figure C.6, Figure C.7, Figure C.4, Figure C.5), which is promising for deployment.
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CONCLUSION

This master thesis focused on designing expressive locomotion controllers, which can pro-

duce a variety of locomotion skills, including acrobatic and dynamic motions. The long-

term goal is to use that expressivity to solve more complex real-world tasks. The first

chapter presents how to design a walking policy with a reference-based and reference-free

approach, from reward signal only and no motion clips. Using these techniques to learn

a walking policy is feasible but already complex, as reward signals have to be carefully

designed and tuned in both cases, and for the reference-based technique, the parameters

and expression of the reference trajectory have to be carefully defined. These approaches

limit the exploration of more acrobatic and complex motions. The key is to use motion

clips and adapt them to the kinematics of the robot (motion retargeting) and to teach an

agent to track the kinematic reference. Reward shaping is crucial to incentivize the agent

to track the reference, but the learning framework is much more general than the PMTG

and reference-free approaches and can be used for any type of motion provided at least one

motion clip. Motion clips contain the transitions between motions and characterize natural

motions better than any other techniques of motion generation (reward shaping, PMTG),

which is crucial to learning complex locomotion skills.

When considering walking gaits solely, the approach tracking motion clips and pre-

sented in chapter 3 generates much more natural-looking motions than approaches using

a direct specification of the motion in the reward as presented in chapter 2. The approach

based on motion specification through motion clips generates gaits with higher footsteps

and fewer base oscillations, i.e. the agent learns to use the hip joint for balance.

Current work focuses on producing one single policy, which could imitate a diverse

repertoire of locomotion skills and deploy the learned policy on hardware.
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APPENDIX A

SUPPLEMENTARY MATERIALS

Supplementary materials are available at this link for download. It comprises videos of

simulation and hardware results for the designed policies. Code for the work is available

on github, please click here.
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APPENDIX B

GYM ENVIRONMENT

Raisim is the simulator and physics engine that was used for this work [29]. For a more

exhaustive list of parameters used for the code, please refer to the configuration (yaml files)

provided with each environment.
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APPENDIX C

TRACKING PERFORMANCE FOR A DYNAMIC JUMP

This part of the appendix presents the performance of the policy in imitating a dynamic

jump. The performances for other motions are similar and can be downloaded here. The

generalized coordinates comprise the position in the world frame, the orientation in quater-

nion representation wrt. the reference frame, and the joint positions. The reference is

represented in black dashed lines.

Figure C.1: Generalized coordinates.In order, the CoM position wrt . the world frame and
orientation wrt . the world frame in quaternions, and the joint positions.
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Figure C.2: Generalized coordinates. In order, the CoM position wrt . the world frame and
orientation wrt . the world frame in quaternions, and the joint positions.
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Figure C.3: Generalized coordinates.In order, the CoM position wrt . the world frame and
orientation wrt . the world frame in quaternions, and the joint positions.
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Figure C.4: Policy residual actions.
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Figure C.5: Policy residual actions.
:
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Figure C.6: Joint torques.
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Figure C.7: Joint torques.
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APPENDIX D

GENERALIZATION CAPABILITIES

This part of the appendix presents the out-of-distribution performance of a policy that was

trained on one motion clip of each type, i.e. 10 motion clips. 554 motion clips were used

for evaluation.

Figure D.1: Final simulation step reached in simulation. Histogram regrouping motion
clips based on the final step reached in simulation (in a motion clip). The tested motion
clips contained all 999 simulation steps. This plot shows that 250 motion clips, half of the
dataset, were tracked until the end, and 70 more until half of the animation.
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Figure D.2: Average reward per control step. Histogram regrouping motion clips based on
the average reward per control step. This plot shows the average reward per control step,
which is what the agent earns in one control step. The score is high for all motion clips,
exemplifying that tracking is of high quality for the part of the reference motion that is
tracked, even for out-of-distribution samples.
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Figure D.3: Total reward for the entire episode or motion clip. Histogram regrouping
motion clips with respect to their performance for the entire duration of the tracking even
after termination. This plot is a combination of Figure D.2 and Figure D.1. Almost half of
the out-of-distribution motions are successfully imitated.
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